Diffusion-Induced Ordered Nanowire Growth: Mask Patterning Insights.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2024-10-30 DOI:10.3390/nano14211743
Kamila R Bikmeeva, Alexey D Bolshakov
{"title":"Diffusion-Induced Ordered Nanowire Growth: Mask Patterning Insights.","authors":"Kamila R Bikmeeva, Alexey D Bolshakov","doi":"10.3390/nano14211743","DOIUrl":null,"url":null,"abstract":"<p><p>Innovative methods for substrate patterning provide intriguing possibilities for the development of devices based on ordered arrays of semiconductor nanowires. Control over the nanostructures' morphology in situ can be obtained via extensive theoretical studies of their formation. In this paper, we carry out an investigation of the ordered nanowires' formation kinetics depending on the growth mask geometry. Diffusion equations for the growth species on both substrate and nanowire sidewalls depending on the spacing arrangement of the nanostructures and deposition rate are considered. The value of the pitch corresponding to the maximum diffusion flux from the substrate is obtained. The latter is assumed to be the optimum in terms of the nanowire elongation rate. Further study of the adatom kinetics demonstrates that the temporal dependence of a nanowire's length is strongly affected by the ratio of the adatom's diffusion length on the substrate and sidewalls, providing insights into the proper choice of a growth wafer. The developed model allows for customization of the growth protocols and estimation of the important diffusion parameters of the growth species.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547360/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14211743","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Innovative methods for substrate patterning provide intriguing possibilities for the development of devices based on ordered arrays of semiconductor nanowires. Control over the nanostructures' morphology in situ can be obtained via extensive theoretical studies of their formation. In this paper, we carry out an investigation of the ordered nanowires' formation kinetics depending on the growth mask geometry. Diffusion equations for the growth species on both substrate and nanowire sidewalls depending on the spacing arrangement of the nanostructures and deposition rate are considered. The value of the pitch corresponding to the maximum diffusion flux from the substrate is obtained. The latter is assumed to be the optimum in terms of the nanowire elongation rate. Further study of the adatom kinetics demonstrates that the temporal dependence of a nanowire's length is strongly affected by the ratio of the adatom's diffusion length on the substrate and sidewalls, providing insights into the proper choice of a growth wafer. The developed model allows for customization of the growth protocols and estimation of the important diffusion parameters of the growth species.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩散诱导的有序纳米线生长:掩模图案化的启示。
基底图案化的创新方法为开发基于有序半导体纳米线阵列的设备提供了引人入胜的可能性。通过对纳米结构的形成进行广泛的理论研究,可以在原位控制纳米结构的形态。在本文中,我们对有序纳米线的形成动力学进行了研究,这取决于生长掩模的几何形状。根据纳米结构的间距排列和沉积速率,考虑了生长物种在衬底和纳米线侧壁上的扩散方程。得出了与来自基底的最大扩散通量相对应的间距值。假定后者是纳米线伸长率的最佳值。对原子动力学的进一步研究表明,纳米线长度的时间依赖性受原子在基底和侧壁上的扩散长度比的影响很大,这为正确选择生长晶片提供了启示。利用所开发的模型,可以定制生长协议并估算生长物种的重要扩散参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
Current Advances in Nanoelectronics, Nanosensors, and Devices. Deep Ultraviolet Excitation Photoluminescence Characteristics and Correlative Investigation of Al-Rich AlGaN Films on Sapphire. Ni Nanoparticles Supported on Graphene-Based Materials as Highly Stable Catalysts for the Cathode of Alkaline Membrane Fuel Cells. Study of Hard Protein Corona on Lipid Surface of Composite Nanoconstruction. Synthesis of Needle-like CoO Nanowires Decorated with Electrospun Carbon Nanofibers for High-Performance Flexible Supercapacitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1