András Bojtor, Dávid Krisztián, Ferenc Korsós, Sándor Kollarics, Gábor Paráda, Márton Kollár, Endre Horváth, Xavier Mettan, Bence G Márkus, László Forró, Ferenc Simon
{"title":"Dynamics of Photoinduced Charge Carriers in Metal-Halide Perovskites.","authors":"András Bojtor, Dávid Krisztián, Ferenc Korsós, Sándor Kollarics, Gábor Paráda, Márton Kollár, Endre Horváth, Xavier Mettan, Bence G Márkus, László Forró, Ferenc Simon","doi":"10.3390/nano14211742","DOIUrl":null,"url":null,"abstract":"<p><p>The measurement and description of the charge-carrier lifetime (τc) is crucial for the wide-ranging applications of lead-halide perovskites. We present time-resolved microwave-detected photoconductivity decay (TRMCD) measurements and a detailed analysis of the possible recombination mechanisms including trap-assisted, radiative, and Auger recombination. We prove that performing injection-dependent measurement is crucial in identifying the recombination mechanism. We present temperature and injection level dependent measurements in CsPbBr<sub>3</sub>, which is the most common inorganic lead-halide perovskite. In this material, we observe the dominance of charge-carrier trapping, which results in ultra-long charge-carrier lifetimes. Although charge trapping can limit the effectiveness of materials in photovoltaic applications, it also offers significant advantages for various alternative uses, including delayed and persistent photodetection, charge-trap memory, afterglow light-emitting diodes, quantum information storage, and photocatalytic activity.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547212/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14211742","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The measurement and description of the charge-carrier lifetime (τc) is crucial for the wide-ranging applications of lead-halide perovskites. We present time-resolved microwave-detected photoconductivity decay (TRMCD) measurements and a detailed analysis of the possible recombination mechanisms including trap-assisted, radiative, and Auger recombination. We prove that performing injection-dependent measurement is crucial in identifying the recombination mechanism. We present temperature and injection level dependent measurements in CsPbBr3, which is the most common inorganic lead-halide perovskite. In this material, we observe the dominance of charge-carrier trapping, which results in ultra-long charge-carrier lifetimes. Although charge trapping can limit the effectiveness of materials in photovoltaic applications, it also offers significant advantages for various alternative uses, including delayed and persistent photodetection, charge-trap memory, afterglow light-emitting diodes, quantum information storage, and photocatalytic activity.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.