Andrii Vovk, Dariia Popadiuk, Bogdan Postolnyi, Sergey Bunyaev, Pavel Štrichovanec, José Ángel Pardo, Pedro Antonio Algarabel, Olga Salyuk, Vladislav Korenivski, Gleb N Kakazei, Vladimir O Golub, João Pedro Araujo
{"title":"Effect of Thermal Processing on the Structural and Magnetic Properties of Epitaxial Co<sub>2</sub>FeGe Films.","authors":"Andrii Vovk, Dariia Popadiuk, Bogdan Postolnyi, Sergey Bunyaev, Pavel Štrichovanec, José Ángel Pardo, Pedro Antonio Algarabel, Olga Salyuk, Vladislav Korenivski, Gleb N Kakazei, Vladimir O Golub, João Pedro Araujo","doi":"10.3390/nano14211745","DOIUrl":null,"url":null,"abstract":"<p><p>The structure and magnetic properties of epitaxial Heusler alloy films (Co<sub>2</sub>FeGe) deposited on MgO (100) substrates were investigated. Films of 60 nm thickness were prepared by magnetron co-sputtering at different substrate temperatures (T<sub>S</sub>), and those deposited at room temperature were later annealed at various temperatures (T<sub>a</sub>). X-ray diffraction confirmed (001) [110] Co<sub>2</sub>FeGe || (001) [100] MgO epitaxial growth. A slight tetragonal distortion of the film cubic structure was found in all samples due to the tensile stress induced by the mismatch of the lattice parameters between Co<sub>2</sub>FeGe and the substrate. Improved quality of epitaxy and the formation of an atomically ordered L2<sub>1</sub> structure were observed for films processed at elevated temperatures. The values of magnetization increased with increasing T<sub>S</sub> and T<sub>a</sub>. Ferromagnetic resonance (FMR) studies revealed 45° in-plane rotation of the easy anisotropy axis direction depending on the degree of the tetragonal distortion. The film annealed at T<sub>a</sub> = 573 K possesses the minimal FMR linewidth and magnetic damping, while both these parameters increase for another T<sub>S</sub> and T<sub>a</sub>. Overall, this study underscores the crucial role of thermal treatment in optimizing the magnetic properties of Co<sub>2</sub>FeGe films for potential spintronic and magnonic applications.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547484/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14211745","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The structure and magnetic properties of epitaxial Heusler alloy films (Co2FeGe) deposited on MgO (100) substrates were investigated. Films of 60 nm thickness were prepared by magnetron co-sputtering at different substrate temperatures (TS), and those deposited at room temperature were later annealed at various temperatures (Ta). X-ray diffraction confirmed (001) [110] Co2FeGe || (001) [100] MgO epitaxial growth. A slight tetragonal distortion of the film cubic structure was found in all samples due to the tensile stress induced by the mismatch of the lattice parameters between Co2FeGe and the substrate. Improved quality of epitaxy and the formation of an atomically ordered L21 structure were observed for films processed at elevated temperatures. The values of magnetization increased with increasing TS and Ta. Ferromagnetic resonance (FMR) studies revealed 45° in-plane rotation of the easy anisotropy axis direction depending on the degree of the tetragonal distortion. The film annealed at Ta = 573 K possesses the minimal FMR linewidth and magnetic damping, while both these parameters increase for another TS and Ta. Overall, this study underscores the crucial role of thermal treatment in optimizing the magnetic properties of Co2FeGe films for potential spintronic and magnonic applications.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.