{"title":"A major role of class III HD-ZIPs in promoting sugar beet cyst nematode parasitism in Arabidopsis.","authors":"Xunliang Liu, Melissa G Mitchum","doi":"10.1371/journal.ppat.1012610","DOIUrl":null,"url":null,"abstract":"<p><p>Cyst nematodes use a stylet to secrete CLE-like peptide effector mimics into selected root cells of their host plants to hijack endogenous plant CLE signaling pathways for feeding site (syncytium) formation. Here, we identified ATHB8, encoding a HD-ZIP III family transcription factor, as a downstream component of the CLE signaling pathway in syncytium formation. ATHB8 is expressed in the early stages of syncytium initiation, and then transitions to neighboring cells of the syncytium as it expands; an expression pattern coincident with auxin response at the infection site. Conversely, MIR165a, which expresses in endodermal cells and moves into the vasculature to suppress HD-ZIP III TFs, is down-regulated near the infection site. Knocking down HD-ZIP III TFs by inducible over-expression of MIR165a in Arabidopsis dramatically reduced female development of the sugar beet cyst nematode (Heterodera schachtii). HD-ZIP III TFs are known to function downstream of auxin to promote cellular quiescence and define stem cell organizer cells in vascular patterning. Taken together, our results suggest that HD-ZIP III TFs function together with a CLE and auxin signaling network to promote syncytium formation, possibly by inducing root cells into a quiescent status and priming them for initial syncytial cell establishment and/or subsequent cellular incorporation.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012610","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cyst nematodes use a stylet to secrete CLE-like peptide effector mimics into selected root cells of their host plants to hijack endogenous plant CLE signaling pathways for feeding site (syncytium) formation. Here, we identified ATHB8, encoding a HD-ZIP III family transcription factor, as a downstream component of the CLE signaling pathway in syncytium formation. ATHB8 is expressed in the early stages of syncytium initiation, and then transitions to neighboring cells of the syncytium as it expands; an expression pattern coincident with auxin response at the infection site. Conversely, MIR165a, which expresses in endodermal cells and moves into the vasculature to suppress HD-ZIP III TFs, is down-regulated near the infection site. Knocking down HD-ZIP III TFs by inducible over-expression of MIR165a in Arabidopsis dramatically reduced female development of the sugar beet cyst nematode (Heterodera schachtii). HD-ZIP III TFs are known to function downstream of auxin to promote cellular quiescence and define stem cell organizer cells in vascular patterning. Taken together, our results suggest that HD-ZIP III TFs function together with a CLE and auxin signaling network to promote syncytium formation, possibly by inducing root cells into a quiescent status and priming them for initial syncytial cell establishment and/or subsequent cellular incorporation.
期刊介绍:
Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.