Victoria Sieber, Thilo Rusche, Shan Yang, Bram Stieltjes, Urs Fischer, Stefano Trebeschi, Philippe Cattin, Dan Linh Nguyen-Kim, Marios-Nikos Psychogios, Johanna M Lieb, Peter B Sporns
{"title":"Automated assessment of brain MRIs in multiple sclerosis patients significantly reduces reading time.","authors":"Victoria Sieber, Thilo Rusche, Shan Yang, Bram Stieltjes, Urs Fischer, Stefano Trebeschi, Philippe Cattin, Dan Linh Nguyen-Kim, Marios-Nikos Psychogios, Johanna M Lieb, Peter B Sporns","doi":"10.1007/s00234-024-03497-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Assessment of multiple sclerosis (MS) lesions on magnetic resonance imaging (MRI) is tedious, time-consuming, and error-prone. We evaluate whether assessment of new, expanding, and contrast-enhancing MS lesions can be done more time-efficiently by radiologists with assistance of artificial intelligence (AI).</p><p><strong>Methods: </strong>Baseline and three follow-up (FU) MRIs of thirty-five consecutive patients diagnosed with MS were assessed by a radiologist manually, and with assistance of an AI-tool. Results were discussed with a consultant neuroradiologist and time metrics were evaluated.</p><p><strong>Results: </strong>The mean reading time for the resident radiologist was 9.05 min (95CI: 6.85-11:25). With AI-assistance, the reading time was reduced by 2.83 min (95CI: 3.28-2.41, p < 0.001). The reading decreased steadily from baseline to FU3 for the resident radiologist (9.85 min baseline, 9.21 FU1, 8.64 FU2 and 8.44 FU3, p < 0.001). Assistance of AI further remarkably decreased reading times during follow-ups (3.29 min FU1, 3.92 FU2, 3.79 FU3, p < 0.001) but not at baseline (0.26 min, p = 0.96). The baseline reading time of the resident radiologist was 5.04 min (p < 0.001), with each lesion adding 0.14 min (p < 0.001). There was a substantial decrease in the baseline reading time from 5.04 min to 1.59 min (p = 0.23) with AI-assistance. Discussion of the reading results of the resident with the neuroradiology consultant (as usual in clinical routine) was exemplary done for FU-3 MRIs and added another 3 min (CI:2.27-3.76) to the reading time without AI-assistance.</p><p><strong>Conclusion: </strong>We found that AI-assisted reading of MRIs of patients with MS may be faster than evaluating these MRIs without AI-assistance.</p>","PeriodicalId":19422,"journal":{"name":"Neuroradiology","volume":" ","pages":"2171-2176"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611969/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroradiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00234-024-03497-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Assessment of multiple sclerosis (MS) lesions on magnetic resonance imaging (MRI) is tedious, time-consuming, and error-prone. We evaluate whether assessment of new, expanding, and contrast-enhancing MS lesions can be done more time-efficiently by radiologists with assistance of artificial intelligence (AI).
Methods: Baseline and three follow-up (FU) MRIs of thirty-five consecutive patients diagnosed with MS were assessed by a radiologist manually, and with assistance of an AI-tool. Results were discussed with a consultant neuroradiologist and time metrics were evaluated.
Results: The mean reading time for the resident radiologist was 9.05 min (95CI: 6.85-11:25). With AI-assistance, the reading time was reduced by 2.83 min (95CI: 3.28-2.41, p < 0.001). The reading decreased steadily from baseline to FU3 for the resident radiologist (9.85 min baseline, 9.21 FU1, 8.64 FU2 and 8.44 FU3, p < 0.001). Assistance of AI further remarkably decreased reading times during follow-ups (3.29 min FU1, 3.92 FU2, 3.79 FU3, p < 0.001) but not at baseline (0.26 min, p = 0.96). The baseline reading time of the resident radiologist was 5.04 min (p < 0.001), with each lesion adding 0.14 min (p < 0.001). There was a substantial decrease in the baseline reading time from 5.04 min to 1.59 min (p = 0.23) with AI-assistance. Discussion of the reading results of the resident with the neuroradiology consultant (as usual in clinical routine) was exemplary done for FU-3 MRIs and added another 3 min (CI:2.27-3.76) to the reading time without AI-assistance.
Conclusion: We found that AI-assisted reading of MRIs of patients with MS may be faster than evaluating these MRIs without AI-assistance.
期刊介绍:
Neuroradiology aims to provide state-of-the-art medical and scientific information in the fields of Neuroradiology, Neurosciences, Neurology, Psychiatry, Neurosurgery, and related medical specialities. Neuroradiology as the official Journal of the European Society of Neuroradiology receives submissions from all parts of the world and publishes peer-reviewed original research, comprehensive reviews, educational papers, opinion papers, and short reports on exceptional clinical observations and new technical developments in the field of Neuroimaging and Neurointervention. The journal has subsections for Diagnostic and Interventional Neuroradiology, Advanced Neuroimaging, Paediatric Neuroradiology, Head-Neck-ENT Radiology, Spine Neuroradiology, and for submissions from Japan. Neuroradiology aims to provide new knowledge about and insights into the function and pathology of the human nervous system that may help to better diagnose and treat nervous system diseases. Neuroradiology is a member of the Committee on Publication Ethics (COPE) and follows the COPE core practices. Neuroradiology prefers articles that are free of bias, self-critical regarding limitations, transparent and clear in describing study participants, methods, and statistics, and short in presenting results. Before peer-review all submissions are automatically checked by iThenticate to assess for potential overlap in prior publication.