Nuclear versus cytoplasmic IKKα signaling in keratinocytes leads to opposite skin phenotypes and inflammatory responses, and a different predisposition to cancer.
Verónica A García-García, Josefa P Alameda, M Jesús Fernández-Aceñero, Manuel Navarro, Ramón García-Escudero, Angustias Page, Raúl Mateo-Gallego, Jesús M Paramio, Ángel Ramírez, Rosa A García-Fernández, Ana Bravo, M Llanos Casanova
{"title":"Nuclear versus cytoplasmic IKKα signaling in keratinocytes leads to opposite skin phenotypes and inflammatory responses, and a different predisposition to cancer.","authors":"Verónica A García-García, Josefa P Alameda, M Jesús Fernández-Aceñero, Manuel Navarro, Ramón García-Escudero, Angustias Page, Raúl Mateo-Gallego, Jesús M Paramio, Ángel Ramírez, Rosa A García-Fernández, Ana Bravo, M Llanos Casanova","doi":"10.1038/s41388-024-03203-0","DOIUrl":null,"url":null,"abstract":"<p><p>IKKα is known as an essential protein for skin homeostasis. However, the lack of suitable models to investigate its functions in the skin has led to IKKα being mistakenly considered as a suppressor of non-melanoma skin cancer (NMSC) development. In this study, using our previously generated transgenic mouse models expressing exogenous IKKα in the cytoplasm (C-IKKα mice) or in the nucleus (N-IKKα mice) of basal keratinocytes, we demonstrate that at each subcellular localization, IKKα differently regulates signaling pathways important for maintaining the balance between keratinocyte proliferation and differentiation, and for the cutaneous inflammatory response. In addition, each type of IKKα-transgenic mice shows different predisposition to the development of spontaneous NMSC. Specifically, N-IKKα mice display an atrophic epidermis with exacerbated terminal differentiation, signs of premature skin aging, premalignant lesions, and develop squamous cell carcinomas (SCCs). Conversely, C-IKKα mice, whose keratinocytes are nearly devoid of endogenous nuclear IKKα, do not develop skin SCCs, although they exhibit hyperplastic skin with deficiencies in terminal epidermal differentiation, chronic cutaneous inflammation, and constitutive activation of STAT-3 and NF-κB signaling pathways. Altogether, our data demonstrate that alterations in the localization of IKKα in the nucleus or cytoplasm of keratinocytes cause opposite skin changes and differentially predispose to the growth of skin SCCs.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-024-03203-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
IKKα is known as an essential protein for skin homeostasis. However, the lack of suitable models to investigate its functions in the skin has led to IKKα being mistakenly considered as a suppressor of non-melanoma skin cancer (NMSC) development. In this study, using our previously generated transgenic mouse models expressing exogenous IKKα in the cytoplasm (C-IKKα mice) or in the nucleus (N-IKKα mice) of basal keratinocytes, we demonstrate that at each subcellular localization, IKKα differently regulates signaling pathways important for maintaining the balance between keratinocyte proliferation and differentiation, and for the cutaneous inflammatory response. In addition, each type of IKKα-transgenic mice shows different predisposition to the development of spontaneous NMSC. Specifically, N-IKKα mice display an atrophic epidermis with exacerbated terminal differentiation, signs of premature skin aging, premalignant lesions, and develop squamous cell carcinomas (SCCs). Conversely, C-IKKα mice, whose keratinocytes are nearly devoid of endogenous nuclear IKKα, do not develop skin SCCs, although they exhibit hyperplastic skin with deficiencies in terminal epidermal differentiation, chronic cutaneous inflammation, and constitutive activation of STAT-3 and NF-κB signaling pathways. Altogether, our data demonstrate that alterations in the localization of IKKα in the nucleus or cytoplasm of keratinocytes cause opposite skin changes and differentially predispose to the growth of skin SCCs.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.