Emma Valima, Vera Varis, Kseniia Bureiko, Joanna K Lempiäinen, Anna-Mari Schroderus, Laura Oksa, Olli Lohi, Tuure Kinnunen, Markku Varjosalo, Einari A Niskanen, Ville Paakinaho, Jorma J Palvimo
{"title":"SUMOylation inhibition potentiates the glucocorticoid receptor to program growth arrest of acute lymphoblastic leukemia cells.","authors":"Emma Valima, Vera Varis, Kseniia Bureiko, Joanna K Lempiäinen, Anna-Mari Schroderus, Laura Oksa, Olli Lohi, Tuure Kinnunen, Markku Varjosalo, Einari A Niskanen, Ville Paakinaho, Jorma J Palvimo","doi":"10.1038/s41388-025-03305-3","DOIUrl":null,"url":null,"abstract":"<p><p>Glucocorticoids are a mainstay in the treatment of B-cell acute lymphoblastic leukemia (B-ALL). The glucocorticoid receptor (GR), a ligand-activated transcription factor (TF), mediates their actions. Chromatin occupancy, chromatin-protein networks (chromatomes) and gene programmes of GR are regulated by SUMOylation, a post-translational modification with therapeutic implications in other hematomalignancies. To unravel the GR-SUMOylation crosstalk in B-ALL, we induced hypoSUMOylation in NALM6 B-ALL cells with a SUMOylation inhibitor (SUMOi, ML-792). Genome-wide profiling of GR and SUMO chromatin-binding and chromatin accessibility revealed that hypoSUMOylation augmented GR chromatin occupancy and altered chromatin openness. Association with transcriptome data indicated that the hypoSUMOylation-induced GR-binding sites predominantly repressed genes associated with cell cycle and DNA replication. Consistently, hypoSUMOylation potentiated glucocorticoid-induced cell cycle arrest and growth suppression. Moreover, our proteomic analyses revealed that the protein network of chromatin-bound GR is tightly intertwined with SUMO2/3 and that SUMOylation modulates the stability of the network. The chromatome contained several B-cell TFs with cognate binding motifs found on GR-adjacent chromatin sites, indicating their simultaneous occupancy on chromatin. In sum, our data imply potential for targeting SUMOylation to increase sensitivity to glucocorticoids in B-ALL, supported by ex vivo data of glucocorticoid and SUMOi TAK-981 combination-treated B-ALL patient samples.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-025-03305-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glucocorticoids are a mainstay in the treatment of B-cell acute lymphoblastic leukemia (B-ALL). The glucocorticoid receptor (GR), a ligand-activated transcription factor (TF), mediates their actions. Chromatin occupancy, chromatin-protein networks (chromatomes) and gene programmes of GR are regulated by SUMOylation, a post-translational modification with therapeutic implications in other hematomalignancies. To unravel the GR-SUMOylation crosstalk in B-ALL, we induced hypoSUMOylation in NALM6 B-ALL cells with a SUMOylation inhibitor (SUMOi, ML-792). Genome-wide profiling of GR and SUMO chromatin-binding and chromatin accessibility revealed that hypoSUMOylation augmented GR chromatin occupancy and altered chromatin openness. Association with transcriptome data indicated that the hypoSUMOylation-induced GR-binding sites predominantly repressed genes associated with cell cycle and DNA replication. Consistently, hypoSUMOylation potentiated glucocorticoid-induced cell cycle arrest and growth suppression. Moreover, our proteomic analyses revealed that the protein network of chromatin-bound GR is tightly intertwined with SUMO2/3 and that SUMOylation modulates the stability of the network. The chromatome contained several B-cell TFs with cognate binding motifs found on GR-adjacent chromatin sites, indicating their simultaneous occupancy on chromatin. In sum, our data imply potential for targeting SUMOylation to increase sensitivity to glucocorticoids in B-ALL, supported by ex vivo data of glucocorticoid and SUMOi TAK-981 combination-treated B-ALL patient samples.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.