Shreyas S. Kuduvalli , Daisy Precilla Senthilathiban , Indrani Biswas , Justin S. Antony , Madhu Subramani , T.S. Anitha
{"title":"The synergistic anti-Warburg efficacy of temozolomide, metformin and epigallocatechin gallate in glioblastoma","authors":"Shreyas S. Kuduvalli , Daisy Precilla Senthilathiban , Indrani Biswas , Justin S. Antony , Madhu Subramani , T.S. Anitha","doi":"10.1016/j.taap.2024.117146","DOIUrl":null,"url":null,"abstract":"<div><div>An important hallmark of glioblastoma aggressiveness is its altered metabolism of glucose. This metabolic shift wherein the tumor cells employ aerobic glycolysis regardless of oxygen availability <em>via</em> reprogramming of mitochondrial oxidative phosphorylation is known as the Warburg effect. Previous literatures have linked this metabolic reprograming to tumor progression and glioblastoma cell proliferation making it a key target for targeted drug therapy. Based on this lacuna, the current study aimed to explore the therapeutic efficacy of the triple-drug combination of temozolomide, metformin and epigallocatechin gallate in attenuating Warburg effect and glucose uptake in glioblastoma both <em>in vitro</em> and <em>in vivo</em>. Our results showed that the triple-drug combination had significantly reduced glucose uptake and reversed the Warburg effect in glioblastoma cells and in the glioma-induced xenograft rat model. Thus, the triple-drug combination would serve as an effective therapeutic regime to hamper glioblastoma progression <em>via</em> altering glucose metabolism and improving the overall prognosis in patient setting.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"493 ","pages":"Article 117146"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X24003454","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
An important hallmark of glioblastoma aggressiveness is its altered metabolism of glucose. This metabolic shift wherein the tumor cells employ aerobic glycolysis regardless of oxygen availability via reprogramming of mitochondrial oxidative phosphorylation is known as the Warburg effect. Previous literatures have linked this metabolic reprograming to tumor progression and glioblastoma cell proliferation making it a key target for targeted drug therapy. Based on this lacuna, the current study aimed to explore the therapeutic efficacy of the triple-drug combination of temozolomide, metformin and epigallocatechin gallate in attenuating Warburg effect and glucose uptake in glioblastoma both in vitro and in vivo. Our results showed that the triple-drug combination had significantly reduced glucose uptake and reversed the Warburg effect in glioblastoma cells and in the glioma-induced xenograft rat model. Thus, the triple-drug combination would serve as an effective therapeutic regime to hamper glioblastoma progression via altering glucose metabolism and improving the overall prognosis in patient setting.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.