Electroacupuncture may alleviate inflammatory pain by downregulating the expression of P2Y14 receptor in the primary somatosensory cortex.

IF 3 4区 医学 Q2 NEUROSCIENCES Purinergic Signalling Pub Date : 2024-11-07 DOI:10.1007/s11302-024-10058-3
Shuai Hou, Cui-Yuan Chen, Rui-Zhu Zhou, Liu-Xuan He, Xiao-Xiao Zhao, Sha-Sha Chen, Sha Yang, Hai-Yan Yin, Shu-Guang Yu
{"title":"Electroacupuncture may alleviate inflammatory pain by downregulating the expression of P2Y<sub>14</sub> receptor in the primary somatosensory cortex.","authors":"Shuai Hou, Cui-Yuan Chen, Rui-Zhu Zhou, Liu-Xuan He, Xiao-Xiao Zhao, Sha-Sha Chen, Sha Yang, Hai-Yan Yin, Shu-Guang Yu","doi":"10.1007/s11302-024-10058-3","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing evidence indicated that purinergic signalling involved in electroacupuncture (EA)-induced analgesia. Whether purinergic P2Y<sub>14</sub> receptor contributes to EA-mediated analgesia remains unclear. Here, we report that the expression of P2Y<sub>14</sub> receptor in the hindlimb region of the primary somatosensory cortex (S1HL) was significantly upregulated on Complete Freund's Adjuvant (CFA)-induced pain model mice, while was downregulated after EA treatment (2 Hz frequency, 1 mA intensity, and 30 min duration) at \"Zusanli\" (also named ST36 acupoint). EA-mediated analgesia could be reversed by injection of P2RY<sub>14</sub> agonist uridine diphosphate glucose (UDPG) into the bilateral S1HL, while prolonged by injection of P2RY<sub>14</sub> antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPTN). It suggested that EA may alleviate inflammatory pain by downregulating the expression of P2RY<sub>14</sub> in the S1HL.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-024-10058-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing evidence indicated that purinergic signalling involved in electroacupuncture (EA)-induced analgesia. Whether purinergic P2Y14 receptor contributes to EA-mediated analgesia remains unclear. Here, we report that the expression of P2Y14 receptor in the hindlimb region of the primary somatosensory cortex (S1HL) was significantly upregulated on Complete Freund's Adjuvant (CFA)-induced pain model mice, while was downregulated after EA treatment (2 Hz frequency, 1 mA intensity, and 30 min duration) at "Zusanli" (also named ST36 acupoint). EA-mediated analgesia could be reversed by injection of P2RY14 agonist uridine diphosphate glucose (UDPG) into the bilateral S1HL, while prolonged by injection of P2RY14 antagonist pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPTN). It suggested that EA may alleviate inflammatory pain by downregulating the expression of P2RY14 in the S1HL.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电针可通过下调初级躯体感觉皮层中 P2Y14 受体的表达来缓解炎性疼痛。
越来越多的证据表明,嘌呤能信号参与了电针(EA)诱导的镇痛。嘌呤能 P2Y14 受体是否有助于 EA 介导的镇痛仍不清楚。在这里,我们发现在完全弗氏佐剂(CFA)诱导的疼痛模型小鼠的后肢初级体感皮层(S1HL)中,P2Y14受体的表达明显上调,而在 "足三里"(又名ST36穴)处进行电针治疗(频率2赫兹、强度1毫安、持续时间30分钟)后,P2Y14受体的表达下调。向双侧S1HL注射P2RY14激动剂二磷酸尿苷葡萄糖(UDPG)可逆转EA介导的镇痛,而注射P2RY14拮抗剂磷酸吡哆醛-6-氮苯基-2',4'-二磺酸(PPTN)可延长EA介导的镇痛。这表明 EA 可通过下调 S1HL 中 P2RY14 的表达来缓解炎性疼痛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Purinergic Signalling
Purinergic Signalling 医学-神经科学
CiteScore
6.60
自引率
17.10%
发文量
75
审稿时长
6-12 weeks
期刊介绍: Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.
期刊最新文献
Correction to: Preparation and preliminary evaluation of a tritium-labeled allosteric P2X4 receptor antagonist. Machine learning-aided search for ligands of P2Y6 and other P2Y receptors. Purinergic regulation of pulmonary vascular tone. Role of ecto-5'-nucleotidase in bladder function activity and smooth muscle contractility. Unexpected role of microglia and P2Y12 in the induction of and emergence from anesthesia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1