Jamie Burke, Samuel Gibbon, Justin Engelmann, Adam Threlfall, Ylenia Giarratano, Charlene Hamid, Stuart King, Ian J C MacCormick, Thomas J MacGillivray
{"title":"SLOctolyzer: Fully Automatic Analysis Toolkit for Segmentation and Feature Extracting in Scanning Laser Ophthalmoscopy Images.","authors":"Jamie Burke, Samuel Gibbon, Justin Engelmann, Adam Threlfall, Ylenia Giarratano, Charlene Hamid, Stuart King, Ian J C MacCormick, Thomas J MacGillivray","doi":"10.1167/tvst.13.11.7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this study was to introduce SLOctolyzer: an open-source analysis toolkit for en face retinal vessels in infrared reflectance scanning laser ophthalmoscopy (SLO) images.</p><p><strong>Methods: </strong>SLOctolyzer includes two main modules: segmentation and measurement. The segmentation module uses deep learning methods to delineate retinal anatomy, and detects the fovea and optic disc, whereas the measurement module quantifies the complexity, density, tortuosity, and caliber of the segmented retinal vessels. We evaluated the segmentation module using unseen data and measured its reproducibility.</p><p><strong>Results: </strong>SLOctolyzer's segmentation module performed well against unseen internal test data (Dice for all-vessels = 0.91; arteries = 0.84; veins = 0.85; optic disc = 0.94; and fovea = 0.88). External validation against severe retinal pathology showed decreased performance (Dice for arteries = 0.72; veins = 0.75; and optic disc = 0.90). SLOctolyzer had good reproducibility (mean difference for fractal dimension = -0.001; density = -0.0003; caliber = -0.32 microns; and tortuosity density = 0.001). SLOctolyzer can process a 768 × 768 pixel macula-centered SLO image in under 20 seconds and a disc-centered SLO image in under 30 seconds using a laptop CPU.</p><p><strong>Conclusions: </strong>To our knowledge, SLOctolyzer is the first open-source tool to convert raw SLO images into reproducible and clinically meaningful retinal vascular parameters. It requires no specialist knowledge or proprietary software, and allows manual correction of segmentations and re-computing of vascular metrics. SLOctolyzer is freely available at https://github.com/jaburke166/SLOctolyzer.</p><p><strong>Translational relevance: </strong>SLO images are captured simultaneous to optical coherence tomography (OCT), and we believe SLOctolyzer will be useful for extracting retinal vascular measurements from large OCT image sets and linking them to ocular or systemic diseases.</p>","PeriodicalId":23322,"journal":{"name":"Translational Vision Science & Technology","volume":"13 11","pages":"7"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552063/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Vision Science & Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/tvst.13.11.7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The purpose of this study was to introduce SLOctolyzer: an open-source analysis toolkit for en face retinal vessels in infrared reflectance scanning laser ophthalmoscopy (SLO) images.
Methods: SLOctolyzer includes two main modules: segmentation and measurement. The segmentation module uses deep learning methods to delineate retinal anatomy, and detects the fovea and optic disc, whereas the measurement module quantifies the complexity, density, tortuosity, and caliber of the segmented retinal vessels. We evaluated the segmentation module using unseen data and measured its reproducibility.
Results: SLOctolyzer's segmentation module performed well against unseen internal test data (Dice for all-vessels = 0.91; arteries = 0.84; veins = 0.85; optic disc = 0.94; and fovea = 0.88). External validation against severe retinal pathology showed decreased performance (Dice for arteries = 0.72; veins = 0.75; and optic disc = 0.90). SLOctolyzer had good reproducibility (mean difference for fractal dimension = -0.001; density = -0.0003; caliber = -0.32 microns; and tortuosity density = 0.001). SLOctolyzer can process a 768 × 768 pixel macula-centered SLO image in under 20 seconds and a disc-centered SLO image in under 30 seconds using a laptop CPU.
Conclusions: To our knowledge, SLOctolyzer is the first open-source tool to convert raw SLO images into reproducible and clinically meaningful retinal vascular parameters. It requires no specialist knowledge or proprietary software, and allows manual correction of segmentations and re-computing of vascular metrics. SLOctolyzer is freely available at https://github.com/jaburke166/SLOctolyzer.
Translational relevance: SLO images are captured simultaneous to optical coherence tomography (OCT), and we believe SLOctolyzer will be useful for extracting retinal vascular measurements from large OCT image sets and linking them to ocular or systemic diseases.
期刊介绍:
Translational Vision Science & Technology (TVST), an official journal of the Association for Research in Vision and Ophthalmology (ARVO), an international organization whose purpose is to advance research worldwide into understanding the visual system and preventing, treating and curing its disorders, is an online, open access, peer-reviewed journal emphasizing multidisciplinary research that bridges the gap between basic research and clinical care. A highly qualified and diverse group of Associate Editors and Editorial Board Members is led by Editor-in-Chief Marco Zarbin, MD, PhD, FARVO.
The journal covers a broad spectrum of work, including but not limited to:
Applications of stem cell technology for regenerative medicine,
Development of new animal models of human diseases,
Tissue bioengineering,
Chemical engineering to improve virus-based gene delivery,
Nanotechnology for drug delivery,
Design and synthesis of artificial extracellular matrices,
Development of a true microsurgical operating environment,
Refining data analysis algorithms to improve in vivo imaging technology,
Results of Phase 1 clinical trials,
Reverse translational ("bedside to bench") research.
TVST seeks manuscripts from scientists and clinicians with diverse backgrounds ranging from basic chemistry to ophthalmic surgery that will advance or change the way we understand and/or treat vision-threatening diseases. TVST encourages the use of color, multimedia, hyperlinks, program code and other digital enhancements.