Pulsation artifact reduction using compressed sensitivity encoding in Gd-EOB-DTPA contrast-enhanced magnetic resonance imaging.

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Radiological Physics and Technology Pub Date : 2024-11-07 DOI:10.1007/s12194-024-00858-y
Masafumi Nakamura, Yasuo Takatsu, Mutsumi Yoshizawa, Kenichiro Yamamura, Tosiaki Miyati
{"title":"Pulsation artifact reduction using compressed sensitivity encoding in Gd-EOB-DTPA contrast-enhanced magnetic resonance imaging.","authors":"Masafumi Nakamura, Yasuo Takatsu, Mutsumi Yoshizawa, Kenichiro Yamamura, Tosiaki Miyati","doi":"10.1007/s12194-024-00858-y","DOIUrl":null,"url":null,"abstract":"<p><p>In Gd-EOB-DTPA-enhanced MRI, cardiac pulsation artifacts in the left lobe often hinder diagnosis, the image quality need to improve. This study aimed to reduce cardiac pulsation artifacts in Gd-EOB-DTPA-enhanced three-dimensional (3D) T1-weighted turbo-field echo (3D-T1TFE) using compressed sensitivity encoding (CS).For phantom evaluation, the cardiac phantom was manually operated using a metronome-synchronized apparatus, comprising a bag-valve mask, a breathing circuit, and a Jackson-Rees system. Transverse images of a liver phantom were acquired using enhanced T1 high-resolution isotropic volumetric excitation with CS (CS-eTHRIVE) and sensitivity encoding (S-eTHRIVE). For evaluation, images obtained during cardiac phantom operation were subtracted from those obtained when the phantom was stationary. Standard deviation (SD) of the difference images was used as the evaluation metric, and assessments were conducted based on changes in heart rate and TFE factor. For clinical image evaluation, artifacts in hepatobiliary phase images acquired 15 min after Gd-EOB-DTPA injection in the order of S-eTHRIVE and CS-eTHRIVE were visually evaluated at four levels. In heart-rate evaluation (40, 60, and 80 beats/min), CS-eTHRIVE revealed significantly lower SD values compared to S-eTHRIVE across all heart rates (P < 0.01), with no significant differences between heart rates. For TFE factor evaluation, CS-eTHRIVE with a factor of 35 exhibited the lowest SD, which was significantly different from all other groups (P < 0.01). In clinical image evaluation, CS-eTHRIVE achieved higher visual scores (mean ± SD: 3.72 ± 0.46) compared with S-eTHRIVE (2.72 ± 0.98, P < 0.01).CS reduced pulsation artifacts in Gd-EOB-DTPA-enhanced 3D-T1TFE.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00858-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

In Gd-EOB-DTPA-enhanced MRI, cardiac pulsation artifacts in the left lobe often hinder diagnosis, the image quality need to improve. This study aimed to reduce cardiac pulsation artifacts in Gd-EOB-DTPA-enhanced three-dimensional (3D) T1-weighted turbo-field echo (3D-T1TFE) using compressed sensitivity encoding (CS).For phantom evaluation, the cardiac phantom was manually operated using a metronome-synchronized apparatus, comprising a bag-valve mask, a breathing circuit, and a Jackson-Rees system. Transverse images of a liver phantom were acquired using enhanced T1 high-resolution isotropic volumetric excitation with CS (CS-eTHRIVE) and sensitivity encoding (S-eTHRIVE). For evaluation, images obtained during cardiac phantom operation were subtracted from those obtained when the phantom was stationary. Standard deviation (SD) of the difference images was used as the evaluation metric, and assessments were conducted based on changes in heart rate and TFE factor. For clinical image evaluation, artifacts in hepatobiliary phase images acquired 15 min after Gd-EOB-DTPA injection in the order of S-eTHRIVE and CS-eTHRIVE were visually evaluated at four levels. In heart-rate evaluation (40, 60, and 80 beats/min), CS-eTHRIVE revealed significantly lower SD values compared to S-eTHRIVE across all heart rates (P < 0.01), with no significant differences between heart rates. For TFE factor evaluation, CS-eTHRIVE with a factor of 35 exhibited the lowest SD, which was significantly different from all other groups (P < 0.01). In clinical image evaluation, CS-eTHRIVE achieved higher visual scores (mean ± SD: 3.72 ± 0.46) compared with S-eTHRIVE (2.72 ± 0.98, P < 0.01).CS reduced pulsation artifacts in Gd-EOB-DTPA-enhanced 3D-T1TFE.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 Gd-EOB-DTPA 对比增强磁共振成像中使用压缩灵敏度编码减少脉动伪影。
在Gd-EOB-DTPA增强磁共振成像中,左叶的心脏搏动伪影常常妨碍诊断,图像质量亟待提高。本研究旨在利用压缩灵敏度编码(CS)减少 Gd-EOB-DTPA 增强三维(3D)T1 加权涡轮场回波(3D-T1TFE)中的心脏搏动伪影。在进行模型评估时,使用节拍器同步装置手动操作心脏模型,该装置包括一个袋阀面罩、一个呼吸回路和一个 Jackson-Rees 系统。肝脏模型的横向图像是使用增强的 T1 高分辨率各向同性容积激发与 CS(CS-eTHRIVE)和灵敏度编码(S-eTHRIVE)获得的。为了进行评估,将心脏模型运行时获得的图像与模型静止时获得的图像相减。差值图像的标准偏差(SD)被用作评估指标,并根据心率和 TFE 因子的变化进行评估。在临床图像评估方面,按照 S-eTHRIVE 和 CS-eTHRIVE 的顺序,对注射 Gd-EOB-DTPA 15 分钟后获得的肝胆相图像中的伪影进行了四个级别的视觉评估。在心率评估(40、60 和 80 次/分)中,与 S-eTHRIVE 相比,CS-eTHRIVE 在所有心率下的 SD 值都明显较低(P<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
期刊最新文献
Acknowledgment. Evaluation of calculation accuracy and computation time in a commercial treatment planning system for accelerator-based boron neutron capture therapy. Development of deep learning-based novel auto-segmentation for the prostatic urethra on planning CT images for prostate cancer radiotherapy. Effect of deep learning reconstruction on the assessment of pancreatic cystic lesions using computed tomography. Assessment of accuracy and repeatability of quantitative parameter mapping in MRI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1