{"title":"Segmentation and classification of brain tumor using Taylor fire hawk optimization enabled deep learning approach.","authors":"Ajit Kumar Rout, Sumathi D, Nandakumar S, Sreenu Ponnada","doi":"10.1080/15368378.2024.2421202","DOIUrl":null,"url":null,"abstract":"<p><p>The brain is a crucial organ that controls the body's neural system. The tumor develops and spreads across the brain as a result of irregular cell generation. The provision of substantial treatment to patients requires the early diagnosis of malignancies. However, timely diagnosis and accurate classification were difficult in the conventional models. Thus, the Taylor Fire Hawk optimization (TFHO) is implemented here for effective segmentation and classification. The TFHO is the merging of the Taylor series and Fire Hawk Optimizer (FHO). The de-noising is accomplished by the adaptive median filter, and the segmentation is carried out using M-Net, which has been trained by TFHO. Subsequently, image augmentation is performed to increase the image dimension, followed by the extraction of effective features. Finally, DenseNet is used for the classification, and the training is done by TFHO. The introduced method obtained 94.86% accuracy, 92.83% Negative Predictive Values, 89.33% Positive Predictive Values (PPV), 95.91% True Positive Rate (TPR), 4.37% False Negative Rate (FNR), and 90.98% F1-score.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2024.2421202","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The brain is a crucial organ that controls the body's neural system. The tumor develops and spreads across the brain as a result of irregular cell generation. The provision of substantial treatment to patients requires the early diagnosis of malignancies. However, timely diagnosis and accurate classification were difficult in the conventional models. Thus, the Taylor Fire Hawk optimization (TFHO) is implemented here for effective segmentation and classification. The TFHO is the merging of the Taylor series and Fire Hawk Optimizer (FHO). The de-noising is accomplished by the adaptive median filter, and the segmentation is carried out using M-Net, which has been trained by TFHO. Subsequently, image augmentation is performed to increase the image dimension, followed by the extraction of effective features. Finally, DenseNet is used for the classification, and the training is done by TFHO. The introduced method obtained 94.86% accuracy, 92.83% Negative Predictive Values, 89.33% Positive Predictive Values (PPV), 95.91% True Positive Rate (TPR), 4.37% False Negative Rate (FNR), and 90.98% F1-score.
期刊介绍:
Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.