Double-Bridging Increases the Stability of Zinc(II) Metal–Organic Cages

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-11-04 DOI:10.1021/jacs.4c0974210.1021/jacs.4c09742
Hannah Kurz, Paula C. P. Teeuwen, Tanya K. Ronson, Jack B. Hoffman, Philipp Pracht, David J. Wales and Jonathan R. Nitschke*, 
{"title":"Double-Bridging Increases the Stability of Zinc(II) Metal–Organic Cages","authors":"Hannah Kurz,&nbsp;Paula C. P. Teeuwen,&nbsp;Tanya K. Ronson,&nbsp;Jack B. Hoffman,&nbsp;Philipp Pracht,&nbsp;David J. Wales and Jonathan R. Nitschke*,&nbsp;","doi":"10.1021/jacs.4c0974210.1021/jacs.4c09742","DOIUrl":null,"url":null,"abstract":"<p >A key feature of coordination cages is the dynamic nature of their coordinative bonds, which facilitates the synthesis of complex polyhedral structures and their post-assembly modification. However, this dynamic nature can limit cage stability. Increasing cage robustness is important for real-world use cases. Here we introduce a double-bridging strategy to increase cage stability, where designed pairs of bifunctional subcomponents combine to generate rectangular tetratopic ligands within pseudo-cubic Zn<sub>8</sub>L<sub>6</sub> cages. These cages withstand transmetalation, the addition of competing ligands, and nucleophilic imines, under conditions where their single-bridged congeners decompose. Our approach not only increases the stability and robustness of the cages while maintaining their polyhedral structure, but also enables the incorporation of additional functional units in proximity to the cavity. The double-bridging strategy also facilitates the synthesis of larger cages, which are inaccessible as single-bridged congeners.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 45","pages":"30958–30965 30958–30965"},"PeriodicalIF":14.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c09742","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c09742","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A key feature of coordination cages is the dynamic nature of their coordinative bonds, which facilitates the synthesis of complex polyhedral structures and their post-assembly modification. However, this dynamic nature can limit cage stability. Increasing cage robustness is important for real-world use cases. Here we introduce a double-bridging strategy to increase cage stability, where designed pairs of bifunctional subcomponents combine to generate rectangular tetratopic ligands within pseudo-cubic Zn8L6 cages. These cages withstand transmetalation, the addition of competing ligands, and nucleophilic imines, under conditions where their single-bridged congeners decompose. Our approach not only increases the stability and robustness of the cages while maintaining their polyhedral structure, but also enables the incorporation of additional functional units in proximity to the cavity. The double-bridging strategy also facilitates the synthesis of larger cages, which are inaccessible as single-bridged congeners.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双桥增加锌(II)金属有机笼的稳定性
配位笼的一个主要特点是其配位键的动态性质,这有利于合成复杂的多面体结构及其组装后的修饰。然而,这种动态特性会限制配位笼的稳定性。提高配位笼的稳定性对于实际应用非常重要。在这里,我们介绍了一种提高笼稳定性的双桥策略,即设计成对的双功能子成分结合在一起,在伪立方 Zn8L6 笼内生成矩形四配位体。在单桥接同源物分解的条件下,这些保持架可以承受跨金属化、竞争配体的添加和亲核亚胺。我们的方法不仅能在保持多面体结构的同时提高笼子的稳定性和坚固性,还能在空腔附近加入额外的功能单元。双桥策略还有助于合成更大的笼,而单桥同系物是无法合成这种笼的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Oxygen Vacancy Boosts Nitrogen-Centered Radical Coupling Initiated by Primary Amine Electrooxidation Synthesis of Multisubstituted Cyclopentadiene Derivatives from 3,3-Disubstituted Cyclopropenes and Internal Alkynes Catalyzed by Low-Valent Niobium Complexes Molecular Design of Phthalocyanine-Based Drug Coassembly with Tailored Function Generative Pretrained Transformer for Heterogeneous Catalysts Plateau–Rayleigh Instability in Soft-Lattice Inorganic Solids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1