Electrochemical Synthesis of Nitrite and Nitrate via Cathodic Oxygen Activation in Liquefied Ammonia

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-11-04 DOI:10.1021/jacs.4c1027910.1021/jacs.4c10279
Moritz Lukas Krebs,  and , Ferdi Schüth*, 
{"title":"Electrochemical Synthesis of Nitrite and Nitrate via Cathodic Oxygen Activation in Liquefied Ammonia","authors":"Moritz Lukas Krebs,&nbsp; and ,&nbsp;Ferdi Schüth*,&nbsp;","doi":"10.1021/jacs.4c1027910.1021/jacs.4c10279","DOIUrl":null,"url":null,"abstract":"<p >The electrochemical oxidation of ammonia (NH<sub>3</sub>) enables decentralized small-scale synthesis of nitrate (NO<sub>3</sub><sup>–</sup>) and nitrite (NO<sub>2</sub><sup>–</sup>) under ambient conditions by directly utilizing renewable energy. Yet, their electrosynthesis has been restricted to aqueous media and low ammonia concentrations. For the first time, we demonstrate here a strategy enabling the direct electrooxidation of liquefied NH<sub>3</sub> to NO<sub>3</sub><sup>–</sup> and NO<sub>2</sub><sup>–</sup> by using molecular oxygen, achieving combined Faraday efficiencies above 40%.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 45","pages":"30753–30757 30753–30757"},"PeriodicalIF":14.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c10279","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c10279","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical oxidation of ammonia (NH3) enables decentralized small-scale synthesis of nitrate (NO3) and nitrite (NO2) under ambient conditions by directly utilizing renewable energy. Yet, their electrosynthesis has been restricted to aqueous media and low ammonia concentrations. For the first time, we demonstrate here a strategy enabling the direct electrooxidation of liquefied NH3 to NO3 and NO2 by using molecular oxygen, achieving combined Faraday efficiencies above 40%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在液化氨中通过阴极氧活化电化学合成亚硝酸盐和硝酸盐
氨(NH3)的电化学氧化可直接利用可再生能源,在环境条件下分散地小规模合成硝酸盐(NO3-)和亚硝酸盐(NO2-)。然而,它们的电合成一直局限于水介质和低氨浓度。我们在此首次展示了一种利用分子氧将液化 NH3 直接电氧化为 NO3- 和 NO2-的策略,其综合法拉第效率超过 40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Oxygen Vacancy Boosts Nitrogen-Centered Radical Coupling Initiated by Primary Amine Electrooxidation Synthesis of Multisubstituted Cyclopentadiene Derivatives from 3,3-Disubstituted Cyclopropenes and Internal Alkynes Catalyzed by Low-Valent Niobium Complexes Molecular Design of Phthalocyanine-Based Drug Coassembly with Tailored Function Generative Pretrained Transformer for Heterogeneous Catalysts Plateau–Rayleigh Instability in Soft-Lattice Inorganic Solids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1