An Amplification-Free Digital Assay Based on Primer Exchange Reaction-Mediated Botryoidal-Like Fluorescent Polystyrene Dots to Detect Multiple Pathogenic Bacteria
{"title":"An Amplification-Free Digital Assay Based on Primer Exchange Reaction-Mediated Botryoidal-Like Fluorescent Polystyrene Dots to Detect Multiple Pathogenic Bacteria","authors":"Zhipan Wang, Aimin Ma and Yiping Chen*, ","doi":"10.1021/acsnano.4c0906910.1021/acsnano.4c09069","DOIUrl":null,"url":null,"abstract":"<p >Multiple and ultrasensitive detection of pathogenic bacteria is critical but remains a challenge. Here, we introduce a digital assay for multiplexed and target DNA amplification-free detection of pathogenic bacteria using botryoidal-like fluorescent polystyrene dots (PS-dots), which were first prepared through the hybridization reaction between primer exchange reaction chains and polystyrene nanospheres that encapsulated polymer dots for signal preamplification. The pathogenic bacteria’s DNA was cleavaged by the argonaute (Ago) protein-mediated multiple and precise cleavage reactions, where the obtained target sequences bridged the magnetic beads (MBs) and botryoidal-like PS-dots via a hybridization reaction, and the fluorescent MB-botryoidal PS-dot complexes were utilized as digital probes based on colors and sizes for digital encoding. An artificial-intelligence-fluorescent microsphere counting algorithm was applied to identify and count the fluorescent MBs for digital readout. This digital assay combined the ultrabright botryoidal-like PS-dots with <i>Clostridium butyricum</i> Ago’s precise enzyme cleavage properties, achieving simultaneous detection of three pathogenic bacteria with a linearity range from 10<sup>2</sup> to 10<sup>6</sup> CFU/mL without target DNA amplification within 1.5 h. This digital assay has also been applied to detect aquatic and clinical samples with accepted accuracy (98%), which offers an avenue for a next-generation multiplexed digital platform for pathogenic bacteria analysis.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 45","pages":"31174–31187 31174–31187"},"PeriodicalIF":15.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c09069","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Multiple and ultrasensitive detection of pathogenic bacteria is critical but remains a challenge. Here, we introduce a digital assay for multiplexed and target DNA amplification-free detection of pathogenic bacteria using botryoidal-like fluorescent polystyrene dots (PS-dots), which were first prepared through the hybridization reaction between primer exchange reaction chains and polystyrene nanospheres that encapsulated polymer dots for signal preamplification. The pathogenic bacteria’s DNA was cleavaged by the argonaute (Ago) protein-mediated multiple and precise cleavage reactions, where the obtained target sequences bridged the magnetic beads (MBs) and botryoidal-like PS-dots via a hybridization reaction, and the fluorescent MB-botryoidal PS-dot complexes were utilized as digital probes based on colors and sizes for digital encoding. An artificial-intelligence-fluorescent microsphere counting algorithm was applied to identify and count the fluorescent MBs for digital readout. This digital assay combined the ultrabright botryoidal-like PS-dots with Clostridium butyricum Ago’s precise enzyme cleavage properties, achieving simultaneous detection of three pathogenic bacteria with a linearity range from 102 to 106 CFU/mL without target DNA amplification within 1.5 h. This digital assay has also been applied to detect aquatic and clinical samples with accepted accuracy (98%), which offers an avenue for a next-generation multiplexed digital platform for pathogenic bacteria analysis.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.