Daniel Budáč, Vojtěch Miloš, Michal Carda, Martin Paidar*, Karel Bouzek and Jürgen Fuhrmann,
{"title":"A Monte Carlo Approach for Simulating Electrical Conductivity in Highly Porous Ceramic Composites: Impact of Internal Structure","authors":"Daniel Budáč, Vojtěch Miloš, Michal Carda, Martin Paidar*, Karel Bouzek and Jürgen Fuhrmann, ","doi":"10.1021/acsami.4c0828710.1021/acsami.4c08287","DOIUrl":null,"url":null,"abstract":"<p >Porous ceramic composites play an important role in several applications. This is due to their unique properties resulting from a combination of various materials. Determination of the composite properties and structure is crucial for their further development and optimization. However, composite analysis often requires complex, expensive, and time-demanding experimental work. Mathematical modeling represents an effective tool to substitute experimental approach. The present study employs a Monte Carlo 3D equivalent electronic circuit network model developed to analyze a highly porous composite on the basis of minimum easily obtainable input parameters. Solid oxide cell electrodes were used as a model example, and this study focuses primarily on materials with a porosity of 55% and higher, characterized by deviation of behavior from those of lower void fraction share. This task is approached by adding to the original Monte Carlo model an additional parameter defining the void phase coalescence phenomenon. The enhanced model accurately simulates electrical conductivity for experimental samples of up to 75% porosity. Using sample composition, single-phase properties, and experimentally determined conductivity, this model allows us to estimate data of the internal structure of the material. This approach offers a rapid and cost-effective method to study material microstructure, providing insights into properties, such as electrical conductivity and heat conductivity. The present research thus contributes to advancing predictive capabilities in understanding and optimizing the performance of composite materials with potential in various technological applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"16 45","pages":"62292–62300 62292–62300"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsami.4c08287","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.4c08287","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Porous ceramic composites play an important role in several applications. This is due to their unique properties resulting from a combination of various materials. Determination of the composite properties and structure is crucial for their further development and optimization. However, composite analysis often requires complex, expensive, and time-demanding experimental work. Mathematical modeling represents an effective tool to substitute experimental approach. The present study employs a Monte Carlo 3D equivalent electronic circuit network model developed to analyze a highly porous composite on the basis of minimum easily obtainable input parameters. Solid oxide cell electrodes were used as a model example, and this study focuses primarily on materials with a porosity of 55% and higher, characterized by deviation of behavior from those of lower void fraction share. This task is approached by adding to the original Monte Carlo model an additional parameter defining the void phase coalescence phenomenon. The enhanced model accurately simulates electrical conductivity for experimental samples of up to 75% porosity. Using sample composition, single-phase properties, and experimentally determined conductivity, this model allows us to estimate data of the internal structure of the material. This approach offers a rapid and cost-effective method to study material microstructure, providing insights into properties, such as electrical conductivity and heat conductivity. The present research thus contributes to advancing predictive capabilities in understanding and optimizing the performance of composite materials with potential in various technological applications.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.