Shuen Chen, Gengchang Lai, Xiaoyi Zhang, Xiaoxiao Feng, Liping Tong, Chenglong Peng, Xingchen He, Yang Li and Jiahong Wang*,
{"title":"Enhancing the Lithium Storage Performance of Phosphorus–Carbon Composites by Reinforcing P–C Bonding with High-Strength Metal Nanoparticles","authors":"Shuen Chen, Gengchang Lai, Xiaoyi Zhang, Xiaoxiao Feng, Liping Tong, Chenglong Peng, Xingchen He, Yang Li and Jiahong Wang*, ","doi":"10.1021/acsanm.4c0447310.1021/acsanm.4c04473","DOIUrl":null,"url":null,"abstract":"<p >Phosphorus is an ideal anode material for high-rate lithium-ion batteries due to its high theoretical specific capacity and moderate operating potential. However, phosphorus undergoes tremendous volume expansion and low electrical conductivity during lithium storage, affecting its actual lithium storage performance. The formation of P–C bonds is an effective strategy to inhibit the volume expansion and maintain stable electrical contact between phosphorus and the current collector. Herein, high strength metal nanoparticles, such as molybdenum nanoparticles, are introduced into the ball milling process to reinforce P–C bonding and enhance the lithium storage performance. As a result, the BP/Mo/CNTs anode provides a high-rate capacity of 984 mAh g<sup>–1</sup> at 8.0 A g<sup>–1</sup> and high capacity retention of 90.3% after 300 cycles at 0.5 A g<sup>–1</sup>. To demonstrate the universality of this method, BP/W/CNTs nanocomposites were prepared by tungsten-assisted ball milling. This facile strategy provides a practical approach for the formation of abundant covalent bonds to improve the electrochemical performance of composites.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c04473","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphorus is an ideal anode material for high-rate lithium-ion batteries due to its high theoretical specific capacity and moderate operating potential. However, phosphorus undergoes tremendous volume expansion and low electrical conductivity during lithium storage, affecting its actual lithium storage performance. The formation of P–C bonds is an effective strategy to inhibit the volume expansion and maintain stable electrical contact between phosphorus and the current collector. Herein, high strength metal nanoparticles, such as molybdenum nanoparticles, are introduced into the ball milling process to reinforce P–C bonding and enhance the lithium storage performance. As a result, the BP/Mo/CNTs anode provides a high-rate capacity of 984 mAh g–1 at 8.0 A g–1 and high capacity retention of 90.3% after 300 cycles at 0.5 A g–1. To demonstrate the universality of this method, BP/W/CNTs nanocomposites were prepared by tungsten-assisted ball milling. This facile strategy provides a practical approach for the formation of abundant covalent bonds to improve the electrochemical performance of composites.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.