Yue Wang, Qihang Ding*, Gongcheng Ma, Zhiwei Zhang, Jiaqi Wang, Chang Lu, Chunbai Xiang, Kun Qian, Jun Zheng, Yaming Shan, Pengfei Zhang*, Zhen Cheng*, Ping Gong* and Qi Zhao*,
{"title":"Mucus-Penetrable Biomimetic Nanoantibiotics for Pathogen-Induced Pneumonia Treatment","authors":"Yue Wang, Qihang Ding*, Gongcheng Ma, Zhiwei Zhang, Jiaqi Wang, Chang Lu, Chunbai Xiang, Kun Qian, Jun Zheng, Yaming Shan, Pengfei Zhang*, Zhen Cheng*, Ping Gong* and Qi Zhao*, ","doi":"10.1021/acsnano.4c1083710.1021/acsnano.4c10837","DOIUrl":null,"url":null,"abstract":"<p >Bacterial pneumonia has garnered significant attention in the realm of infectious diseases owing to a surge in the incidence of severe infections coupled with the growing scarcity of efficacious therapeutic modalities. Antibiotic treatment is still an irreplaceable method for bacterial pneumonia because of its strong bactericidal activity and good clinical efficacy. However, the mucus layer forming after a bacterial infection in the lungs has been considered as the “Achilles’ heels” facing the clinical application of such treatment. Herein, traceable biomimetic nanoantibiotics (BioNanoCFPs) were developed by loading indacenodithieno[3,2-<i>b</i>]thiophene (ITIC) and cefoperazone (CFP) in nanoplatforms coated with natural killer (NK) cell membranes. The BioNanoCFP exhibited excellent demonstrated mucus-penetrating abilities, facilitating their arrival at the infection site. The presence of Toll-like receptors in the NK cell membrane rendered the BioNanoCFP with the capability to recognize pathogen-associated molecular patterns within bacteria, allowing precise targeting of bacterial colonization sites and achieving substantial therapeutic efficacy. Overall, our findings demonstrate the viability and desirability of using NK cell membrane-mediated drug delivery as a promising strategy for precision treatment.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 45","pages":"31349–31359 31349–31359"},"PeriodicalIF":15.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c10837","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial pneumonia has garnered significant attention in the realm of infectious diseases owing to a surge in the incidence of severe infections coupled with the growing scarcity of efficacious therapeutic modalities. Antibiotic treatment is still an irreplaceable method for bacterial pneumonia because of its strong bactericidal activity and good clinical efficacy. However, the mucus layer forming after a bacterial infection in the lungs has been considered as the “Achilles’ heels” facing the clinical application of such treatment. Herein, traceable biomimetic nanoantibiotics (BioNanoCFPs) were developed by loading indacenodithieno[3,2-b]thiophene (ITIC) and cefoperazone (CFP) in nanoplatforms coated with natural killer (NK) cell membranes. The BioNanoCFP exhibited excellent demonstrated mucus-penetrating abilities, facilitating their arrival at the infection site. The presence of Toll-like receptors in the NK cell membrane rendered the BioNanoCFP with the capability to recognize pathogen-associated molecular patterns within bacteria, allowing precise targeting of bacterial colonization sites and achieving substantial therapeutic efficacy. Overall, our findings demonstrate the viability and desirability of using NK cell membrane-mediated drug delivery as a promising strategy for precision treatment.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.