Room Temperature Magnetic Skyrmions in Gradient-Composition Engineered CoPt Single Layers

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-10-29 DOI:10.1021/acsnano.4c1014510.1021/acsnano.4c10145
Adam Erickson, Qihan Zhang, Hamed Vakili, Chaozhong Li, Suchit Sarin, Suvechhya Lamichhane, Lanxin Jia, Ilja Fescenko, Edward Schwartz, Sy-Hwang Liou, Jeffrey E. Shield, Guozhi Chai, Alexey A. Kovalev, Jingsheng Chen* and Abdelghani Laraoui*, 
{"title":"Room Temperature Magnetic Skyrmions in Gradient-Composition Engineered CoPt Single Layers","authors":"Adam Erickson,&nbsp;Qihan Zhang,&nbsp;Hamed Vakili,&nbsp;Chaozhong Li,&nbsp;Suchit Sarin,&nbsp;Suvechhya Lamichhane,&nbsp;Lanxin Jia,&nbsp;Ilja Fescenko,&nbsp;Edward Schwartz,&nbsp;Sy-Hwang Liou,&nbsp;Jeffrey E. Shield,&nbsp;Guozhi Chai,&nbsp;Alexey A. Kovalev,&nbsp;Jingsheng Chen* and Abdelghani Laraoui*,&nbsp;","doi":"10.1021/acsnano.4c1014510.1021/acsnano.4c10145","DOIUrl":null,"url":null,"abstract":"<p >Topologically protected magnetic skyrmions in magnetic materials are stabilized by an interfacial or bulk Dzyaloshinskii–Moriya interaction (DMI). Interfacial DMI decays with an increase of the magnetic layer thickness in just a few nanometers, and bulk DMI typically stabilizes magnetic skyrmions at low temperatures. Consequently, more flexibility in the manipulation of DMI is required for utilizing nanoscale skyrmions in energy-efficient memory and logic devices at room temperature (RT). Here, we demonstrate the observation of RT skyrmions stabilized by gradient DMI (g-DMI) in composition gradient-engineered CoPt single-layer films by employing the topological Hall effect, magnetic force microscopy, and nitrogen-vacancy scanning magnetometry. Skyrmions remain stable over a wide range of applied magnetic fields and are confirmed to be nearly Bloch-type from micromagnetic simulation and analytical magnetization reconstruction. Furthermore, we observe skyrmion pairs, which may be explained by skyrmion–antiskyrmion interactions. Our findings expand the family of magnetic materials hosting RT magnetic skyrmions by tuning g-DMI via gradient polarity and a choice of magnetic elements.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 45","pages":"31261–31273 31261–31273"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c10145","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Topologically protected magnetic skyrmions in magnetic materials are stabilized by an interfacial or bulk Dzyaloshinskii–Moriya interaction (DMI). Interfacial DMI decays with an increase of the magnetic layer thickness in just a few nanometers, and bulk DMI typically stabilizes magnetic skyrmions at low temperatures. Consequently, more flexibility in the manipulation of DMI is required for utilizing nanoscale skyrmions in energy-efficient memory and logic devices at room temperature (RT). Here, we demonstrate the observation of RT skyrmions stabilized by gradient DMI (g-DMI) in composition gradient-engineered CoPt single-layer films by employing the topological Hall effect, magnetic force microscopy, and nitrogen-vacancy scanning magnetometry. Skyrmions remain stable over a wide range of applied magnetic fields and are confirmed to be nearly Bloch-type from micromagnetic simulation and analytical magnetization reconstruction. Furthermore, we observe skyrmion pairs, which may be explained by skyrmion–antiskyrmion interactions. Our findings expand the family of magnetic materials hosting RT magnetic skyrmions by tuning g-DMI via gradient polarity and a choice of magnetic elements.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
梯度沉积工程 CoPt 单层中的室温磁天幕
磁性材料中拓扑保护的磁性天元是通过界面或体Dzyaloshinski-Moriya相互作用(DMI)稳定下来的。界面 DMI 会随着磁层厚度的增加而衰减,厚度仅为几个纳米,而体 DMI 通常会在低温下稳定磁天线。因此,要在室温(RT)条件下将纳米级磁天幕应用于高能效存储器和逻辑器件中,需要更灵活地处理 DMI。在这里,我们利用拓扑霍尔效应、磁力显微镜和氮空位扫描磁力计,在成分梯度工程 CoPt 单层薄膜中观察到了由梯度 DMI(g-DMI)稳定的 RT 天崩。在很宽的外加磁场范围内,Skyrmions 都能保持稳定,并且通过微磁模拟和分析磁化重建证实它们几乎是布洛赫型的。此外,我们还观察到了天离子对,这可能是天离子-antiskyrmion 相互作用的结果。我们的研究结果通过梯度极性和磁性元素的选择来调整 g-DMI ,从而扩展了容纳 RT 磁性天空离子的磁性材料家族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Targeting Metastasis in Head and Neck Squamous Cell Carcinoma Using Follistatin mRNA Lipid Nanoparticles Photocatalytic Achmatowicz Rearrangement on Triphenylbenzene–Dimethoxyterephthaldehyde–Covalent Organic Framework-Mo for Converting Biomass-Derived Furfuryl Alcohol to Hydropyranone Distinct Inflammatory Programs Underlie the Intramuscular Lipid Nanoparticle Response Spontaneous Lifting and Self-Cleaning of Gas Hydrate Crystals Design Considerations and Fabrication Protocols of High-Performance Intrinsically Stretchable Transistors and Integrated Circuits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1