Jixi Zeng, Jing Wang, Jinzhao Wang, Jia Li, Jiwen Chen, Feng Wei, Jing Zhang, Weijie Song* and Xi Fan*,
{"title":"Flexible Narrow Bandgap Sn–Pb Perovskite Solar Cells with 21% Efficiency Using N,N′-Carbonyldiimidazole Treatments","authors":"Jixi Zeng, Jing Wang, Jinzhao Wang, Jia Li, Jiwen Chen, Feng Wei, Jing Zhang, Weijie Song* and Xi Fan*, ","doi":"10.1021/acsnano.4c1103610.1021/acsnano.4c11036","DOIUrl":null,"url":null,"abstract":"<p >Flexible tin–lead (Sn–Pb) mixed perovskite solar cells (PSCs) are among the promising flexible photovoltaics, owing to the narrow bandgap (NBG) of Sn–Pb perovskites, flexible and wearable features, and their role as a critical component in all-perovskite tandem photovoltaics. However, the flexible Sn–Pb PSCs suffer from a low power conversion efficiency, no higher than 18.5%, along with limited stability. Herein, we reported an efficient and stable flexible NBG Sn–Pb PSC via an <i>N</i>,<i>N</i>′-carbonyldiimidazole (CDI) passivation strategy. CDI, with strong adsorption energy, preferentially binds to Sn<sup>2+</sup> compared with oxygen (O<sub>2</sub>), thus effectively inhibiting the adsorption of O<sub>2</sub> on perovskite surfaces. The transfer of electron density around Sn<sup>2+</sup> dramatically decreased, thus suppressing Sn<sup>2+</sup> oxidation. The CDI treatments endowed the Sn–Pb mixed films with fewer defects, improved crystallinity, better morphology, and matched energy-level alignment. The flexible Sn–Pb devices exhibited a high PCE of 21.02%. Besides, the devices showed enhanced stability and promoted flexibility. This work provides a pathway to visibly increase the efficiency and stability of the flexible Sn–Pb mixed photovoltaic cells.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 45","pages":"31390–31400 31390–31400"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c11036","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible tin–lead (Sn–Pb) mixed perovskite solar cells (PSCs) are among the promising flexible photovoltaics, owing to the narrow bandgap (NBG) of Sn–Pb perovskites, flexible and wearable features, and their role as a critical component in all-perovskite tandem photovoltaics. However, the flexible Sn–Pb PSCs suffer from a low power conversion efficiency, no higher than 18.5%, along with limited stability. Herein, we reported an efficient and stable flexible NBG Sn–Pb PSC via an N,N′-carbonyldiimidazole (CDI) passivation strategy. CDI, with strong adsorption energy, preferentially binds to Sn2+ compared with oxygen (O2), thus effectively inhibiting the adsorption of O2 on perovskite surfaces. The transfer of electron density around Sn2+ dramatically decreased, thus suppressing Sn2+ oxidation. The CDI treatments endowed the Sn–Pb mixed films with fewer defects, improved crystallinity, better morphology, and matched energy-level alignment. The flexible Sn–Pb devices exhibited a high PCE of 21.02%. Besides, the devices showed enhanced stability and promoted flexibility. This work provides a pathway to visibly increase the efficiency and stability of the flexible Sn–Pb mixed photovoltaic cells.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.