Mingrui Wang, Guanghui Zhang*, Hao Wang, Zhiqun Wang, Yu Zhou, Xiaowa Nie, Ben Hang Yin, Chunshan Song* and Xinwen Guo*,
{"title":"Understanding and Tuning the Effects of H2O on Catalytic CO and CO2 Hydrogenation","authors":"Mingrui Wang, Guanghui Zhang*, Hao Wang, Zhiqun Wang, Yu Zhou, Xiaowa Nie, Ben Hang Yin, Chunshan Song* and Xinwen Guo*, ","doi":"10.1021/acs.chemrev.4c0028210.1021/acs.chemrev.4c00282","DOIUrl":null,"url":null,"abstract":"<p >Catalytic CO<sub><i>x</i></sub> (CO and CO<sub>2</sub>) hydrogenation to valued chemicals is one of the promising approaches to address challenges in energy, environment, and climate change. H<sub>2</sub>O is an inevitable side product in these reactions, where its existence and effect are often ignored. In fact, H<sub>2</sub>O significantly influences the catalytic active centers, reaction mechanism, and catalytic performance, preventing us from a definitive and deep understanding on the structure-performance relationship of the authentic catalysts. It is necessary, although challenging, to clarify its effect and provide practical strategies to tune the concentration and distribution of H<sub>2</sub>O to optimize its influence. In this review, we focus on how H<sub>2</sub>O in CO<sub><i>x</i></sub> hydrogenation induces the structural evolution of catalysts and assists in the catalytic processes, as well as efforts to understand the underlying mechanism. We summarize and discuss some representative tuning strategies for realizing the rapid removal or local enrichment of H<sub>2</sub>O around the catalysts, along with brief techno-economic analysis and life cycle assessment. These fundamental understandings and strategies are further extended to the reactions of CO and CO<sub>2</sub> reduction under an external field (light, electricity, and plasma). We also present suggestions and prospects for deciphering and controlling the effect of H<sub>2</sub>O in practical applications.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"124 21","pages":"12006–12085 12006–12085"},"PeriodicalIF":51.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.chemrev.4c00282","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Catalytic COx (CO and CO2) hydrogenation to valued chemicals is one of the promising approaches to address challenges in energy, environment, and climate change. H2O is an inevitable side product in these reactions, where its existence and effect are often ignored. In fact, H2O significantly influences the catalytic active centers, reaction mechanism, and catalytic performance, preventing us from a definitive and deep understanding on the structure-performance relationship of the authentic catalysts. It is necessary, although challenging, to clarify its effect and provide practical strategies to tune the concentration and distribution of H2O to optimize its influence. In this review, we focus on how H2O in COx hydrogenation induces the structural evolution of catalysts and assists in the catalytic processes, as well as efforts to understand the underlying mechanism. We summarize and discuss some representative tuning strategies for realizing the rapid removal or local enrichment of H2O around the catalysts, along with brief techno-economic analysis and life cycle assessment. These fundamental understandings and strategies are further extended to the reactions of CO and CO2 reduction under an external field (light, electricity, and plasma). We also present suggestions and prospects for deciphering and controlling the effect of H2O in practical applications.
期刊介绍:
Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry.
Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.