首页 > 最新文献

Chemical Reviews最新文献

英文 中文
The Analysis of Electron Densities: From Basics to Emergent Applications 电子密度分析:从基础知识到新兴应用
IF 62.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-15 DOI: 10.1021/acs.chemrev.4c00297
Daniel Koch, Michele Pavanello, Xuecheng Shao, Manabu Ihara, Paul W. Ayers, Chérif F. Matta, Samantha Jenkins, Sergei Manzhos
The electron density determines all properties of a system of nuclei and electrons. It is both computable and observable. Its topology allows gaining insight into the mechanisms of bonding and other phenomena in a way that is complementary to and beyond that available from the molecular orbital picture and the formal oxidation state (FOS) formalism. The ability to derive mechanistic insight from electron density is also important with methods where orbitals are not available, such as orbital-free density functional theory (OF-DFT). While density topology-based analyses such as QTAIM (quantum theory of atoms-in-molecules) have been widely used, novel, vector-based techniques recently emerged such as next-generation (NG) QTAIM. Density-dependent quantities are also actively used in machine learning (ML)-based methods, in particular, for ML DFT functional development, including machine-learnt kinetic energy functionals. We review QTAIM and its recent extensions such as NG-QTAIM and localization-delocalization matrices (LDM) and their uses in the analysis of bonding, conformations, mechanisms of redox reactions excitations, as well as ultrafast phenomena. We review recent research showing that direct density analysis can circumvent certain pitfalls of the FOS formalism, in particular in the description of anionic redox, and of the widely used (spherically) projected density of states analysis. We discuss uses of density-based quantities for the construction of DFT functionals and prospects of applications of analyses of density topology to get mechanistic insight with OF-DFT and recently developed time-dependent OF-DFT.
电子密度决定了原子核和电子系统的所有特性。它既可计算又可观测。电子密度的拓扑结构有助于深入了解成键机制和其他现象,是分子轨道图和形式氧化态(FOS)形式主义的补充和超越。在没有轨道的情况下,例如无轨道密度泛函理论 (OF-DFT),从电子密度中获得机理认识的能力也很重要。虽然基于密度拓扑的分析(如 QTAIM(分子中原子的量子理论))已被广泛使用,但最近又出现了基于矢量的新技术,如下一代(NG)QTAIM。基于机器学习(ML)的方法也在积极使用密度相关量,特别是用于 ML DFT 函数开发,包括机器学习动能函数。我们回顾了 QTAIM 及其最近的扩展,如 NG-QTAIM 和定位-非定位矩阵(LDM),以及它们在成键、构象、氧化还原反应激发机制和超快现象分析中的应用。我们回顾了最近的研究,这些研究表明直接密度分析可以规避 FOS 形式主义的某些缺陷,特别是在描述阴离子氧化还原和广泛使用的(球形)投影态密度分析时。我们讨论了基于密度的量在构建 DFT 函数中的应用,以及应用密度拓扑分析深入了解 OF-DFT 和最近开发的时间依赖性 OF-DFT 的机理的前景。
{"title":"The Analysis of Electron Densities: From Basics to Emergent Applications","authors":"Daniel Koch, Michele Pavanello, Xuecheng Shao, Manabu Ihara, Paul W. Ayers, Chérif F. Matta, Samantha Jenkins, Sergei Manzhos","doi":"10.1021/acs.chemrev.4c00297","DOIUrl":"https://doi.org/10.1021/acs.chemrev.4c00297","url":null,"abstract":"The electron density determines all properties of a system of nuclei and electrons. It is both computable and observable. Its topology allows gaining insight into the mechanisms of bonding and other phenomena in a way that is complementary to and beyond that available from the molecular orbital picture and the formal oxidation state (FOS) formalism. The ability to derive mechanistic insight from electron density is also important with methods where orbitals are not available, such as orbital-free density functional theory (OF-DFT). While density topology-based analyses such as QTAIM (quantum theory of atoms-in-molecules) have been widely used, novel, vector-based techniques recently emerged such as next-generation (NG) QTAIM. Density-dependent quantities are also actively used in machine learning (ML)-based methods, in particular, for ML DFT functional development, including machine-learnt kinetic energy functionals. We review QTAIM and its recent extensions such as NG-QTAIM and localization-delocalization matrices (LDM) and their uses in the analysis of bonding, conformations, mechanisms of redox reactions excitations, as well as ultrafast phenomena. We review recent research showing that direct density analysis can circumvent certain pitfalls of the FOS formalism, in particular in the description of anionic redox, and of the widely used (spherically) projected density of states analysis. We discuss uses of density-based quantities for the construction of DFT functionals and prospects of applications of analyses of density topology to get mechanistic insight with OF-DFT and recently developed time-dependent OF-DFT.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"10 1","pages":""},"PeriodicalIF":62.1,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Noncanonical Amino Acid Incorporation in Animals and Animal Cells. 动物和动物细胞中的非顺式氨基酸结合
IF 51.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-14 DOI: 10.1021/acs.chemrev.3c00955
Joo-Chan Kim, YouJin Kim, Suho Cho, Hee-Sung Park

Noncanonical amino acids (ncAAs) are synthetic building blocks that, when incorporated into proteins, confer novel functions and enable precise control over biological processes. These small yet powerful tools offer unprecedented opportunities to investigate and manipulate various complex life forms. In particular, ncAA incorporation technology has garnered significant attention in the study of animals and their constituent cells, which serve as invaluable model organisms for gaining insights into human physiology, genetics, and diseases. This review will provide a comprehensive discussion on the applications of ncAA incorporation technology in animals and animal cells, covering past achievements, current developments, and future perspectives.

非典型氨基酸(ncAAs)是一种人工合成的构件,当被加入蛋白质中时,可赋予新的功能并实现对生物过程的精确控制。这些小而强大的工具为研究和操纵各种复杂的生命形式提供了前所未有的机会。特别是,ncAA 植入技术在动物及其组成细胞的研究中备受关注,而动物及其组成细胞是了解人类生理学、遗传学和疾病的宝贵模式生物。本综述将全面讨论 ncAA 植入技术在动物和动物细胞中的应用,包括过去的成就、当前的发展和未来的展望。
{"title":"Noncanonical Amino Acid Incorporation in Animals and Animal Cells.","authors":"Joo-Chan Kim, YouJin Kim, Suho Cho, Hee-Sung Park","doi":"10.1021/acs.chemrev.3c00955","DOIUrl":"https://doi.org/10.1021/acs.chemrev.3c00955","url":null,"abstract":"<p><p>Noncanonical amino acids (ncAAs) are synthetic building blocks that, when incorporated into proteins, confer novel functions and enable precise control over biological processes. These small yet powerful tools offer unprecedented opportunities to investigate and manipulate various complex life forms. In particular, ncAA incorporation technology has garnered significant attention in the study of animals and their constituent cells, which serve as invaluable model organisms for gaining insights into human physiology, genetics, and diseases. This review will provide a comprehensive discussion on the applications of ncAA incorporation technology in animals and animal cells, covering past achievements, current developments, and future perspectives.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":" ","pages":""},"PeriodicalIF":51.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymmetric Orbital Hybridization at MXene-VO2-x Interface Stabilizes Oxygen Vacancies for Enhanced Reversibility in Aqueous Zinc-ion Battery MXene-VO2-x 界面的不对称轨道杂化可稳定氧空位,从而提高锌离子水电池的可逆性
IF 32.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-14 DOI: 10.1039/d4ee04466e
Yuan Fang, Chunhong Qi, Weichao Bao, Fangfang Xu, Wei Sun, Bin Liu, Xiqian Yu, Wan Jiang, Peng Peng Qiu, Lianjun Wang, Wei Luo
Modulating the storage kinetics of Zn2+ through oxygen vacancy (Ov) manipulation represents a promising approach for developing cathode materials in aqueous rechargeable zinc-ion batteries (ZIBs). However, recent studies have shown that these Ov can undergo migration and refilling during electrochemical cycling, leading to severe structural degradation and rapid capacity fading. Therefore, developing technologies to stabilize Ov is critical for maximizing their efficiency, although it presents a significant challenge. Herein, we demonstrate a covalent heterostructure design that pushes the cycling performance of a vanadium dioxide (VO2) cathode to an unprecedented level. The rational lies in the chemical growth of VO2 nanowall arrays on MXene nanosheets to form Ti-O-V asymmetric orbital hybridization (AOH) at the interface, which remarkably enhances the stability of Ov on VO2. Due to this advanced cathode design, the prepared ZIBs exhibit highly reversible aqueous Zn2+ storage capacities and maintain a robust structure over 30,000 cycles at 20 A g-1, without any significant capacity loss (1.4 %). Detailed experimental and theoretical analysis indicate that the Ti-O-V AOH facilitates a charge transfer pathway at the interface, allowing electrons to migrate from VO2 to MXene surface, thereby stabilizing the Ov both thermodynamically and kinetically. Our work offers an inspiring design principle for developing sustainable cathode materials for high-performance aqueous ZIBs and beyond, leveraging the synergistic effects of Ov and interfacial orbital engineering.
通过操作氧空位(Ov)来调节 Zn2+ 的存储动力学,是开发水性可充电锌离子电池(ZIB)阴极材料的一种很有前景的方法。然而,最近的研究表明,这些氧空位会在电化学循环过程中发生迁移和重新填充,从而导致严重的结构退化和容量快速衰减。因此,开发稳定 Ov 的技术对于最大限度地提高其效率至关重要,尽管这也是一项巨大的挑战。在此,我们展示了一种共价异质结构设计,它将二氧化钒(VO2)阴极的循环性能提升到了前所未有的水平。其原理在于通过化学方法在 MXene 纳米片上生长 VO2 纳米壁阵列,从而在界面上形成 Ti-O-V 不对称轨道杂化(AOH),这显著增强了 Ov 在 VO2 上的稳定性。由于采用了这种先进的阴极设计,所制备的 ZIBs 显示出高度可逆的水性 Zn2+ 储存能力,并且在 20 A g-1 的条件下经过 30,000 次循环后仍能保持稳健的结构,没有任何明显的容量损失(1.4%)。详细的实验和理论分析表明,Ti-O-V AOH 促进了界面上的电荷转移途径,使电子从 VO2 迁移到 MXene 表面,从而在热力学和动力学上稳定了 Ov。我们的研究为开发高性能水性 ZIB 及更高性能的可持续阴极材料提供了一个鼓舞人心的设计原则,充分利用了 Ov 和界面轨道工程的协同效应。
{"title":"Asymmetric Orbital Hybridization at MXene-VO2-x Interface Stabilizes Oxygen Vacancies for Enhanced Reversibility in Aqueous Zinc-ion Battery","authors":"Yuan Fang, Chunhong Qi, Weichao Bao, Fangfang Xu, Wei Sun, Bin Liu, Xiqian Yu, Wan Jiang, Peng Peng Qiu, Lianjun Wang, Wei Luo","doi":"10.1039/d4ee04466e","DOIUrl":"https://doi.org/10.1039/d4ee04466e","url":null,"abstract":"Modulating the storage kinetics of Zn2+ through oxygen vacancy (Ov) manipulation represents a promising approach for developing cathode materials in aqueous rechargeable zinc-ion batteries (ZIBs). However, recent studies have shown that these Ov can undergo migration and refilling during electrochemical cycling, leading to severe structural degradation and rapid capacity fading. Therefore, developing technologies to stabilize Ov is critical for maximizing their efficiency, although it presents a significant challenge. Herein, we demonstrate a covalent heterostructure design that pushes the cycling performance of a vanadium dioxide (VO2) cathode to an unprecedented level. The rational lies in the chemical growth of VO2 nanowall arrays on MXene nanosheets to form Ti-O-V asymmetric orbital hybridization (AOH) at the interface, which remarkably enhances the stability of Ov on VO2. Due to this advanced cathode design, the prepared ZIBs exhibit highly reversible aqueous Zn2+ storage capacities and maintain a robust structure over 30,000 cycles at 20 A g-1, without any significant capacity loss (1.4 %). Detailed experimental and theoretical analysis indicate that the Ti-O-V AOH facilitates a charge transfer pathway at the interface, allowing electrons to migrate from VO2 to MXene surface, thereby stabilizing the Ov both thermodynamically and kinetically. Our work offers an inspiring design principle for developing sustainable cathode materials for high-performance aqueous ZIBs and beyond, leveraging the synergistic effects of Ov and interfacial orbital engineering.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"11 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142609920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalable electrified cementitious materials production and recycling 可扩展的电气化胶凝材料生产和回收利用
IF 32.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-13 DOI: 10.1039/d4ee03529a
Xiao Kun Lu, Wenxin Zhang, Brianna N. Ruggiero, Linsey C. Seitz, Jiaqi Li
The production of Portland cement, the industry-standard cement, contributes ∼8% of global CO2 emissions through fossil-fuel heating and decomposition of limestone (the primary cement raw material). Decarbonization, e.g., via direct electrification, of this 200-year-old liming routine is extremely challenging at the industry scale. We propose a scalable electrochemical decarbonization approach to circumvent the limestone use by switching to carbon-free calcium silicates from abundant minerals and recycled concrete. Water electrolysis produces protons and hydroxides to drive a pH gradient that accelerates Ca2+ ion leaching from calcium silicates and captures atmospheric CO2 to form carbon-negative CaCO3, which serves as the feedstock for cement manufacturing or as the carbon-mineralized product for cement substitution with permanent carbon storage. Value-added co-products amorphous silica and green H2 further enhance cement performance and supplant fossil fuels for net-zero transition, respectively. The products readily meet present-day regulatory standards and demands, and the approach readily synergizes with business-as-usual cement manufacturing and concrete construction, which are important for upscaling and structural safety, promising ready reception by the public and industries. Blended Portland cement produced through our approach with carbon-negative CaCO3 and silica demonstrates enhanced resilience and achieves carbon neutrality or negativity when incorporating storage or circulation of CO2 from cement plant flue gas, respectively. This low-cost, electrochemical cement production approach using abundant ubiquitous raw materials enables electrification, transition to clean fuel, and decarbonization at a gigaton scale.
通过化石燃料加热和分解石灰石(主要水泥原料),波特兰水泥(工业标准水泥)的生产产生了全球 8% 的二氧化碳排放量。通过直接电气化等方式对这一已有 200 年历史的石灰化过程进行去碳化,在工业规模上极具挑战性。我们提出了一种可扩展的电化学脱碳方法,通过改用来自丰富矿物质和再生混凝土的无碳硅酸钙来规避石灰石的使用。水电解产生质子和氢氧化物,推动 pH 值梯度,加速 Ca2+ 离子从硅酸钙中浸出,并捕获大气中的二氧化碳,形成负碳 CaCO3,作为水泥生产的原料或碳矿化产品,用于永久碳储存的水泥替代品。增值副产品无定形二氧化硅和绿色 H2 可分别进一步提高水泥性能和替代化石燃料,实现净零过渡。这些产品可随时满足当前的监管标准和要求,而且这种方法可随时与对升级和结构安全至关重要的水泥生产和混凝土施工实现协同增效,因此很容易受到公众和行业的欢迎。通过我们的方法生产出的含负碳 CaCO3 和二氧化硅的混合波特兰水泥具有更强的复原力,并且在分别结合水泥厂烟气中二氧化碳的储存或循环时实现了碳中和或负碳。这种低成本的电化学水泥生产方法使用的原材料丰富且无处不在,可实现电气化、向清洁燃料过渡以及千兆吨级的去碳化。
{"title":"Scalable electrified cementitious materials production and recycling","authors":"Xiao Kun Lu, Wenxin Zhang, Brianna N. Ruggiero, Linsey C. Seitz, Jiaqi Li","doi":"10.1039/d4ee03529a","DOIUrl":"https://doi.org/10.1039/d4ee03529a","url":null,"abstract":"The production of Portland cement, the industry-standard cement, contributes ∼8% of global CO<small><sub>2</sub></small> emissions through fossil-fuel heating and decomposition of limestone (the primary cement raw material). Decarbonization, <em>e.g.</em>, <em>via</em> direct electrification, of this 200-year-old liming routine is extremely challenging at the industry scale. We propose a scalable electrochemical decarbonization approach to circumvent the limestone use by switching to carbon-free calcium silicates from abundant minerals and recycled concrete. Water electrolysis produces protons and hydroxides to drive a pH gradient that accelerates Ca<small><sup>2+</sup></small> ion leaching from calcium silicates and captures atmospheric CO<small><sub>2</sub></small> to form carbon-negative CaCO<small><sub>3</sub></small>, which serves as the feedstock for cement manufacturing or as the carbon-mineralized product for cement substitution with permanent carbon storage. Value-added co-products amorphous silica and green H<small><sub>2</sub></small> further enhance cement performance and supplant fossil fuels for net-zero transition, respectively. The products readily meet present-day regulatory standards and demands, and the approach readily synergizes with business-as-usual cement manufacturing and concrete construction, which are important for upscaling and structural safety, promising ready reception by the public and industries. Blended Portland cement produced through our approach with carbon-negative CaCO<small><sub>3</sub></small> and silica demonstrates enhanced resilience and achieves carbon neutrality or negativity when incorporating storage or circulation of CO<small><sub>2</sub></small> from cement plant flue gas, respectively. This low-cost, electrochemical cement production approach using abundant ubiquitous raw materials enables electrification, transition to clean fuel, and decarbonization at a gigaton scale.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"14 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High triboelectrification and charge collection efficiency of direct current triboelectric nanogenerator achieved by tri-synergistic enhancement strategy 通过三协同增强策略实现直流三电纳米发电机的高三电化和电荷收集效率
IF 32.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-13 DOI: 10.1039/d4ee03784g
Shuyan Xu, Jian Wang, Chuncai Shan, Kaixian Li, Huiyuan Wu, Gui Li, Shaoke Fu, Qionghua Zhao, Yi Xi, Chenguo Hu
Direct current triboelectric nanogenerator (DC-TENG) utilized air-breakdown effect to collect triboelectrification charges from dielectric tribo-layers, providing a new type of mechanical energy harvesting mode for TENGs, which has demonstrated its high efficiency in energy conversion process. However, boosting the output performance based on structure designs and material modifications still meets great challenges. Herein, we propose a ternary dual-DC-TENG (TDD-TENG) with a triple synergistic enhancement mechanism. The strategies include the space optimization using multiple-unit structure on slider by seamlessly arranging PTFE/PA/electrode to realize maximized space utilization, ternary dielectric material selection by adopting PTFE, PA and PU foam as the tribo-layers with the spontaneously introduced PTFE powder on PU foam to achieve a higher triboelectrification effect and surface lubrication, and bottom electrode design to collect charges unreached by charge collection electrodes (CCEs) on slider forming a dual-DC output. Consequently, TDD-TENG achieves the average power density of 18.37 W m-2, which is the highest in sliding mode DC-TENGs. In addition, the output charge density of rotary TDD-TENG reaches 7.3 mC m-2 at an ultra-low speed of 5 rpm. This work provides a new method to improve output power from structure design and material modification for DC-TENGs.
直流三电纳米发电机(DC-TENG)利用空气击穿效应从电介质三电层收集三电化电荷,为三电纳米发电机提供了一种新型的机械能收集模式,在能量转换过程中表现出高效率。然而,基于结构设计和材料改性提高输出性能仍面临巨大挑战。在此,我们提出了一种具有三重协同增强机制的三元双直流-TENG(TDD-TENG)。其策略包括:通过无缝排列 PTFE/PA/电极,在滑块上使用多单元结构优化空间,实现空间利用最大化;通过采用 PTFE、PA 和聚氨酯泡沫作为三电层,并在聚氨酯泡沫上自发引入 PTFE 粉末,选择三元介电材料,实现更高的三电化效应和表面润滑性;以及通过底部电极设计,在滑块上收集电荷收集电极(CCE)未到达的电荷,形成双直流输出。因此,TDD-TENG 的平均功率密度达到 18.37 W m-2,是滑动模式直流-TENG 中最高的。此外,旋转式 TDD-TENG 的输出电荷密度在每分钟 5 转的超低速下达到了 7.3 mC m-2。这项工作从结构设计和材料改性方面为直流-TENG 提供了一种提高输出功率的新方法。
{"title":"High triboelectrification and charge collection efficiency of direct current triboelectric nanogenerator achieved by tri-synergistic enhancement strategy","authors":"Shuyan Xu, Jian Wang, Chuncai Shan, Kaixian Li, Huiyuan Wu, Gui Li, Shaoke Fu, Qionghua Zhao, Yi Xi, Chenguo Hu","doi":"10.1039/d4ee03784g","DOIUrl":"https://doi.org/10.1039/d4ee03784g","url":null,"abstract":"Direct current triboelectric nanogenerator (DC-TENG) utilized air-breakdown effect to collect triboelectrification charges from dielectric tribo-layers, providing a new type of mechanical energy harvesting mode for TENGs, which has demonstrated its high efficiency in energy conversion process. However, boosting the output performance based on structure designs and material modifications still meets great challenges. Herein, we propose a ternary dual-DC-TENG (TDD-TENG) with a triple synergistic enhancement mechanism. The strategies include the space optimization using multiple-unit structure on slider by seamlessly arranging PTFE/PA/electrode to realize maximized space utilization, ternary dielectric material selection by adopting PTFE, PA and PU foam as the tribo-layers with the spontaneously introduced PTFE powder on PU foam to achieve a higher triboelectrification effect and surface lubrication, and bottom electrode design to collect charges unreached by charge collection electrodes (CCEs) on slider forming a dual-DC output. Consequently, TDD-TENG achieves the average power density of 18.37 W m-2, which is the highest in sliding mode DC-TENGs. In addition, the output charge density of rotary TDD-TENG reaches 7.3 mC m-2 at an ultra-low speed of 5 rpm. This work provides a new method to improve output power from structure design and material modification for DC-TENGs.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"157 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional zeolite film enables stable high-voltage operation of LiCoO2 cathode 多功能沸石薄膜实现了钴酸锂阴极的稳定高压运行
IF 32.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-13 DOI: 10.1039/d4ee04370g
Zezhou Lin, Yiran Ying, Zhihang Xu, Gao Chen, Xi Gong, Zehua Wang, Daqin Guan, Leqi Zhao, Mingyang Yang, Ke Fan, Tiancheng Liu, Hao LI, Honglei Zhang, Huangxu Li, Xi Zhang, Ye Zhu, Zhou-Guang Lu, Zongping Shao, Peiyu Hou, Haitao Huang
Increasing upper cut-off voltage is a useful way for enhancing specific capacity of LiCoO2 (LCO) cathode and the energy density of corresponding lithium-ion batteries (LIBs), while the main challenge is concurrent phase transition associated with oxygen evolution reaction that results in quick decay in electrochemical performance. Here, we report a significant improvement in both capacity and durability at high voltage by simply growing an AlPO4-5 zeolite protecting layer over LCO, with good crystallinity, ordered porous channels and full surface coverage. Such coating, realized by using triethylamine as a template, acts multifunctionally to remarkably alleviative phase transition via suppressing the oxygen release at high voltage, enable fast Li+ diffusion through its nanoporous structure, accelerate the Li+-desolvation on the cathode/electrolyte interface, and boost the redox kinetics, as supported by various in-situ and ex-situ measurements of LCO@AlPO4-5 zeolite (LCO@Z) cathode under a high cut-off voltage of 4.6 V (vs. Li/Li+) and density functional theory (DFT) calculations. As a result, the surface engineered LCO@Z electrode exhibits outstanding cycling stability (capacity retention of 90.3% after 200 cycles) and high-rate capability (108.2 mAh g-1 at 10C). Such zeolite coating strategy provides a new way for developing high-energy-density LIBs with great application potential.
提高上限截止电压是提高钴酸锂(LCO)正极比容量和相应锂离子电池(LIB)能量密度的有效方法,而主要挑战在于与氧进化反应相关的并发相变会导致电化学性能快速衰减。在此,我们报告了通过在 LCO 上简单地生长具有良好结晶性、有序多孔通道和全表面覆盖的 AlPO4-5 沸石保护层,在高电压下显著提高了容量和耐用性。这种涂层是以三乙胺为模板实现的,具有多重功能,可通过抑制高电压下的氧释放来显著缓解相变,使 Li+ 通过其纳米多孔结构快速扩散,加速阴极/电解质界面上的 Li+ 脱溶,并提高氧化还原动力学,这一点在 LCO@AlPO4-5 沸石(LCO@Z)阴极在 4.6 V(相对于 Li/Li+)和密度泛函理论(DFT)计算。结果表明,表面工程 LCO@Z 电极具有出色的循环稳定性(200 次循环后容量保持率为 90.3%)和高速率能力(10C 时 108.2 mAh g-1)。这种沸石涂层策略为开发具有巨大应用潜力的高能量密度 LIB 提供了一条新途径。
{"title":"Multifunctional zeolite film enables stable high-voltage operation of LiCoO2 cathode","authors":"Zezhou Lin, Yiran Ying, Zhihang Xu, Gao Chen, Xi Gong, Zehua Wang, Daqin Guan, Leqi Zhao, Mingyang Yang, Ke Fan, Tiancheng Liu, Hao LI, Honglei Zhang, Huangxu Li, Xi Zhang, Ye Zhu, Zhou-Guang Lu, Zongping Shao, Peiyu Hou, Haitao Huang","doi":"10.1039/d4ee04370g","DOIUrl":"https://doi.org/10.1039/d4ee04370g","url":null,"abstract":"Increasing upper cut-off voltage is a useful way for enhancing specific capacity of LiCoO<small><sub>2</sub></small> (LCO) cathode and the energy density of corresponding lithium-ion batteries (LIBs), while the main challenge is concurrent phase transition associated with oxygen evolution reaction that results in quick decay in electrochemical performance. Here, we report a significant improvement in both capacity and durability at high voltage by simply growing an AlPO<small><sub>4</sub></small>-5 zeolite protecting layer over LCO, with good crystallinity, ordered porous channels and full surface coverage. Such coating, realized by using triethylamine as a template, acts multifunctionally to remarkably alleviative phase transition via suppressing the oxygen release at high voltage, enable fast Li<small><sup>+</sup></small> diffusion through its nanoporous structure, accelerate the Li<small><sup>+</sup></small>-desolvation on the cathode/electrolyte interface, and boost the redox kinetics, as supported by various in-situ and ex-situ measurements of LCO@AlPO<small><sub>4</sub></small>-5 zeolite (LCO@Z) cathode under a high cut-off voltage of 4.6 V (vs. Li/Li<small><sup>+</sup></small>) and density functional theory (DFT) calculations. As a result, the surface engineered LCO@Z electrode exhibits outstanding cycling stability (capacity retention of 90.3% after 200 cycles) and high-rate capability (108.2 mAh g<small><sup>-1</sup></small> at 10C). Such zeolite coating strategy provides a new way for developing high-energy-density LIBs with great application potential.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"6 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Fully Textured Perovskite Silicon Tandems with Thermally Evaporated Hole Transporting Materials 采用热蒸发空穴传输材料的高效全纹理包晶硅串联系统
IF 32.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-13 DOI: 10.1039/d4ee03899a
Bhushan Kore, Oussama Er-raji, Oliver Fischer, Adrian Callies, Oliver Schultz-Wittmann, Patricia Samia Cerian Schulze, Martin Bivour, Stefaan De Wolf, Stefan W Glunz, Juliane Borchert
Fully textured perovskite silicon tandem solar cells effectively minimize the reflection losses and are compatible with industrial silicon production lines. To facilitate scalability and industrial deployment of perovskite silicon tandems all functional layers including perovskite need to be deposited with scalable techniques. Currently, self-assembling molecules (SAM), polymeric and low-molecular-weight organic semiconductors, are widely used as hole transport layers (HTLs) in p-i-n structured perovskite solar cells. Usually, SAMs are deposited via spin coating method, but use of this method could be challenging on large area textured silicon substrates, leading to inhomogeneous SAM layers and lossy HTL/perovskite interfaces. To address this issue, we have investigated thermal evaporation of SAMs (2PACz and Me-4PACz) and some other HTLs like TaTm and Spiro-TTB. We examined the effect of varying HTL thickness on the device performance and showed that the thickness of the thermally evaporated HTLs significantly affects the open circuit voltage (VOC) and fill factor (FF) of the solar cells. Furthermore, using ultraviolet photoemission spectroscopy and Suns-VOC measurements we correlate the changes observed in the VOC and FF with HTL thickness variations to the changes in the energy band positions (loss in the hole selectivity) and effective resistance losses, respectively. With the optimized HTL thickness we obtained ~30% efficiency on 1 cm2 area and ~26% on 4 cm2 area tandem devices.
全纹理包晶硅串联太阳能电池能有效地将反射损耗降至最低,并与工业硅生产线兼容。为了促进包晶体硅串联太阳能电池的可扩展性和工业化应用,包括包晶体在内的所有功能层都需要采用可扩展技术进行沉积。目前,自组装分子(SAM)、高分子和低分子量有机半导体被广泛用作 pi-n 结构光致发光太阳能电池的空穴传输层(HTL)。通常,SAM 通过旋涂法沉积,但在大面积纹理硅衬底上使用这种方法具有挑战性,会导致不均匀的 SAM 层和有损耗的 HTL/过氧化物界面。为了解决这个问题,我们研究了 SAM(2PACz 和 Me-4PACz)和一些其他 HTL(如 TaTm 和 Spiro-TTB)的热蒸发。我们研究了不同 HTL 厚度对器件性能的影响,结果表明热蒸发 HTL 的厚度会显著影响太阳能电池的开路电压(VOC)和填充因子(FF)。此外,利用紫外光发射光谱和太阳-VOC 测量,我们将观察到的 VOC 和 FF 随 HTL 厚度变化而产生的变化分别与能带位置变化(空穴选择性损失)和有效电阻损耗相关联。通过优化 HTL 厚度,我们在 1 平方厘米面积的串联器件上获得了 ~30% 的效率,在 4 平方厘米面积的串联器件上获得了 ~26% 的效率。
{"title":"Efficient Fully Textured Perovskite Silicon Tandems with Thermally Evaporated Hole Transporting Materials","authors":"Bhushan Kore, Oussama Er-raji, Oliver Fischer, Adrian Callies, Oliver Schultz-Wittmann, Patricia Samia Cerian Schulze, Martin Bivour, Stefaan De Wolf, Stefan W Glunz, Juliane Borchert","doi":"10.1039/d4ee03899a","DOIUrl":"https://doi.org/10.1039/d4ee03899a","url":null,"abstract":"Fully textured perovskite silicon tandem solar cells effectively minimize the reflection losses and are compatible with industrial silicon production lines. To facilitate scalability and industrial deployment of perovskite silicon tandems all functional layers including perovskite need to be deposited with scalable techniques. Currently, self-assembling molecules (SAM), polymeric and low-molecular-weight organic semiconductors, are widely used as hole transport layers (HTLs) in p-i-n structured perovskite solar cells. Usually, SAMs are deposited via spin coating method, but use of this method could be challenging on large area textured silicon substrates, leading to inhomogeneous SAM layers and lossy HTL/perovskite interfaces. To address this issue, we have investigated thermal evaporation of SAMs (2PACz and Me-4PACz) and some other HTLs like TaTm and Spiro-TTB. We examined the effect of varying HTL thickness on the device performance and showed that the thickness of the thermally evaporated HTLs significantly affects the open circuit voltage (VOC) and fill factor (FF) of the solar cells. Furthermore, using ultraviolet photoemission spectroscopy and Suns-VOC measurements we correlate the changes observed in the VOC and FF with HTL thickness variations to the changes in the energy band positions (loss in the hole selectivity) and effective resistance losses, respectively. With the optimized HTL thickness we obtained ~30% efficiency on 1 cm2 area and ~26% on 4 cm2 area tandem devices.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"19 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A self-adsorption molecule passivated interface enables efficient and stable lithium metal batteries 自吸附分子钝化界面可实现高效稳定的锂金属电池
IF 32.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-13 DOI: 10.1039/d4ee02903h
Gongxun Lu, Xinru Wu, Miaofei Huang, Mengtian Zhang, Zhihong Piao, Xiongwei Zhong, Chuang Li, Yanze Song, Chengshuai Chang, Kuang Yu, Guangmin Zhou
Despite the theoretical promise of attaining high energy densities, practical applications of lithium metal batteries (LMBs) remain hindered by the inadequacies of the electrode/electrolyte interface and unsatisfied cycling stability. Herein, a self-adsorption molecule with polar groups was designed and introduced in ether electrolyte, aiming to form a high-density and ordered molecular layer occupying active sites on the electrode surface, while restricting electrolyte molecule penetration into the interface. This self-adsorption molecule favors the formation of a robust anion-rich cathode/anode electrolyte interphase due to the change of the interfacial solvation structure, thus inhibiting solvent decomposition and enhancing interfacial stability. Consequently, the addition of this molecule into low-concentration ether electrolytes notably upgrades the electrochemical performance of the LiNi0.8Co0.1Mn0.1O2 (NCM811)||Li battery, which enables a high capacity retention of 87.2% after 250 cycles at 4.5 V. Moreover, the NMC811||Li pouch cells achieve stable cycling over 150 cycles with a capacity retention of 92.9% at a low negative/positive capacity ratio of 2.7 with a lean electrolyte. This interface passivation design strategy provides a promising path toward high-energy, durable, and safe rechargeable LMBs.
尽管理论上有望实现高能量密度,但锂金属电池(LMB)的实际应用仍然受到电极/电解质界面缺陷和循环稳定性不理想的阻碍。在此,我们设计了一种带有极性基团的自吸附分子,并将其引入醚电解质中,旨在形成一个高密度、有序的分子层,占据电极表面的活性位点,同时限制电解质分子渗入界面。由于界面溶解结构的改变,这种自吸附分子有利于形成稳固的富阴离子阴极/阳极电解质相间层,从而抑制溶剂分解,提高界面稳定性。因此,在低浓度醚电解质中添加该分子可显著提高镍钴锰锂电池(NCM811)的电化学性能,使其在 4.5 V 下循环 250 次后的容量保持率高达 87.2%。此外,NMC811||锂袋电池在贫电解液条件下,以 2.7 的低负极/正极容量比实现了 150 次以上的稳定循环,容量保持率高达 92.9%。这种界面钝化设计策略为实现高能、耐用和安全的可充电 LMB 提供了一条前景广阔的道路。
{"title":"A self-adsorption molecule passivated interface enables efficient and stable lithium metal batteries","authors":"Gongxun Lu, Xinru Wu, Miaofei Huang, Mengtian Zhang, Zhihong Piao, Xiongwei Zhong, Chuang Li, Yanze Song, Chengshuai Chang, Kuang Yu, Guangmin Zhou","doi":"10.1039/d4ee02903h","DOIUrl":"https://doi.org/10.1039/d4ee02903h","url":null,"abstract":"Despite the theoretical promise of attaining high energy densities, practical applications of lithium metal batteries (LMBs) remain hindered by the inadequacies of the electrode/electrolyte interface and unsatisfied cycling stability. Herein, a self-adsorption molecule with polar groups was designed and introduced in ether electrolyte, aiming to form a high-density and ordered molecular layer occupying active sites on the electrode surface, while restricting electrolyte molecule penetration into the interface. This self-adsorption molecule favors the formation of a robust anion-rich cathode/anode electrolyte interphase due to the change of the interfacial solvation structure, thus inhibiting solvent decomposition and enhancing interfacial stability. Consequently, the addition of this molecule into low-concentration ether electrolytes notably upgrades the electrochemical performance of the LiNi<small><sub>0.8</sub></small>Co<small><sub>0.1</sub></small>Mn<small><sub>0.1</sub></small>O<small><sub>2</sub></small> (NCM811)||Li battery, which enables a high capacity retention of 87.2% after 250 cycles at 4.5 V. Moreover, the NMC811||Li pouch cells achieve stable cycling over 150 cycles with a capacity retention of 92.9% at a low negative/positive capacity ratio of 2.7 with a lean electrolyte. This interface passivation design strategy provides a promising path toward high-energy, durable, and safe rechargeable LMBs.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"1 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing high-temperature electrostatic energy storage via linker engineering of metal–organic frameworks in polymer nanocomposites 通过聚合物纳米复合材料中金属有机框架的链接工程推进高温静电储能
IF 32.5 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-12 DOI: 10.1039/d4ee04085f
Zongliang Xie, Zhiyuan Huang, He Li, Tianlei Xu, Haoyu Zhao, Yunfei Wang, Pang Xi, Zhiqiang Cao, Virginia Altoe, Liana M Klivansky, Zaiyu Wang, Steven Shelton, Shiqi Lai, Peng Liu, Chenhui Zhu, Michael D. Connolly, Corie Y. Ralston, Xiaodan Gu, Zongren Peng, Jian Zhang, Yi Liu
High-performance, thermally resilient polymer dielectrics are essential for film capacitors used in advanced electronic devices and renewable energy systems, particularly at elevated temperatures where conventional polymers fail to perform. Compositing polymers with nanofillers is a well-established approach to enhancing energy storage performance, though there remains a strong need for fillers with broad structural tunability and a clear structure-property relationship to further improve performance at elevated temperatures. Herein, we unravel the untapped potential of UiO-66 metal–organic framework (MOF) derivatives as exceptional nanofillers for tuning the properties of the widely used polyetherimide (PEI). By systematically varying the linker structures, we create a series of isostructural MOF fillers that exhibit contrasting capabilities in regulating the charge transport and energy storage capacities of the resulting composite films. Notably, capacitors based on composite films using the electron-deficient UiO-66-F4 show remarkable long-term charge-discharge stability and achieve ultrahigh discharged energy densities of 9.87 J cm−3 at 150 °C and 9.21 J cm−3 at 200 °C, setting a new benchmark for high-temperature flexible polymer composites. Through comprehensive experimental and theoretical analyses, we establish an unprecedented correlation between the MOF fillers' electronic structures and the composites’ improved electrical breakdown strength and energy storage properties. These findings offer a rational pathway to harness the exceptional structural diversity of MOFs for the development of composite materials suitable for high-temperature electrostatic energy storage.
高性能、热弹性聚合物电介质对于先进电子设备和可再生能源系统中使用的薄膜电容器至关重要,尤其是在传统聚合物无法发挥性能的高温条件下。将聚合物与纳米填料复合是提高储能性能的一种行之有效的方法,但目前仍亟需具有广泛结构可调性和明确结构-性能关系的填料,以进一步提高高温下的性能。在此,我们揭示了 UiO-66 金属有机框架 (MOF) 衍生物作为特殊纳米填料在调整广泛使用的聚醚酰亚胺 (PEI) 性能方面尚未开发的潜力。通过系统地改变连接体结构,我们创造出了一系列等结构 MOF 填料,它们在调节所得复合薄膜的电荷传输和能量存储能力方面表现出了截然不同的能力。值得注意的是,基于使用缺电子 UiO-66-F4 的复合薄膜的电容器显示出显著的长期充放电稳定性,并在 150 °C 和 200 °C 温度下分别实现了 9.87 J cm-3 和 9.21 J cm-3 的超高放电能量密度,为高温柔性聚合物复合材料树立了新的标杆。通过全面的实验和理论分析,我们在 MOF 填料的电子结构与复合材料改进的电击穿强度和储能特性之间建立了前所未有的相关性。这些发现为利用 MOFs 的特殊结构多样性开发适用于高温静电储能的复合材料提供了一条合理的途径。
{"title":"Advancing high-temperature electrostatic energy storage via linker engineering of metal–organic frameworks in polymer nanocomposites","authors":"Zongliang Xie, Zhiyuan Huang, He Li, Tianlei Xu, Haoyu Zhao, Yunfei Wang, Pang Xi, Zhiqiang Cao, Virginia Altoe, Liana M Klivansky, Zaiyu Wang, Steven Shelton, Shiqi Lai, Peng Liu, Chenhui Zhu, Michael D. Connolly, Corie Y. Ralston, Xiaodan Gu, Zongren Peng, Jian Zhang, Yi Liu","doi":"10.1039/d4ee04085f","DOIUrl":"https://doi.org/10.1039/d4ee04085f","url":null,"abstract":"High-performance, thermally resilient polymer dielectrics are essential for film capacitors used in advanced electronic devices and renewable energy systems, particularly at elevated temperatures where conventional polymers fail to perform. Compositing polymers with nanofillers is a well-established approach to enhancing energy storage performance, though there remains a strong need for fillers with broad structural tunability and a clear structure-property relationship to further improve performance at elevated temperatures. Herein, we unravel the untapped potential of UiO-66 metal–organic framework (MOF) derivatives as exceptional nanofillers for tuning the properties of the widely used polyetherimide (PEI). By systematically varying the linker structures, we create a series of isostructural MOF fillers that exhibit contrasting capabilities in regulating the charge transport and energy storage capacities of the resulting composite films. Notably, capacitors based on composite films using the electron-deficient UiO-66-F4 show remarkable long-term charge-discharge stability and achieve ultrahigh discharged energy densities of 9.87 J cm−3 at 150 °C and 9.21 J cm−3 at 200 °C, setting a new benchmark for high-temperature flexible polymer composites. Through comprehensive experimental and theoretical analyses, we establish an unprecedented correlation between the MOF fillers' electronic structures and the composites’ improved electrical breakdown strength and energy storage properties. These findings offer a rational pathway to harness the exceptional structural diversity of MOFs for the development of composite materials suitable for high-temperature electrostatic energy storage.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"1 1","pages":""},"PeriodicalIF":32.5,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding momentum bandgaps in photonic time crystals through resonances 通过共振扩大光子时间晶体的动量带隙
IF 35 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-12 DOI: 10.1038/s41566-024-01563-3
X. Wang, P. Garg, M. S. Mirmoosa, A. G. Lamprianidis, C. Rockstuhl, V. S. Asadchy

The realization of photonic time crystals is a major opportunity but also comes with considerable challenges. The most pressing one, potentially, is the requirement for a substantial modulation strength in the material properties to create a noticeable momentum bandgap. Reaching that noticeable bandgap in optics is highly demanding with current, and possibly also future materials platforms because their modulation strength is small by tendency. Here we demonstrate that by introducing temporal variations in a resonant material, the momentum bandgap can be drastically expanded with modulation strengths in reach with known low-loss materials and realistic laser pump powers. The resonance can emerge from an intrinsic material resonance or a suitably spatially structured material supporting a structural resonance. Our concept is validated for resonant bulk media and optical metasurfaces and paves the way towards the first experimental realizations of photonic time crystals.

实现光子时间晶体是一个重大机遇,但同时也面临着相当大的挑战。最紧迫的挑战可能是要求材料特性具有相当大的调制强度,以产生明显的动量带隙。要在光学领域达到这种明显的带隙,对目前的材料平台,甚至未来的材料平台都有很高的要求,因为它们的调制强度往往很小。在这里,我们证明了通过在共振材料中引入时间变化,可以极大地扩展动量带隙,其调制强度与已知的低损耗材料和实际激光泵浦功率相当。共振可以来自材料本身的共振,也可以来自支持结构共振的适当空间结构材料。我们的概念得到了共振块体介质和光学元表面的验证,并为光子时间晶体的首次实验实现铺平了道路。
{"title":"Expanding momentum bandgaps in photonic time crystals through resonances","authors":"X. Wang, P. Garg, M. S. Mirmoosa, A. G. Lamprianidis, C. Rockstuhl, V. S. Asadchy","doi":"10.1038/s41566-024-01563-3","DOIUrl":"https://doi.org/10.1038/s41566-024-01563-3","url":null,"abstract":"<p>The realization of photonic time crystals is a major opportunity but also comes with considerable challenges. The most pressing one, potentially, is the requirement for a substantial modulation strength in the material properties to create a noticeable momentum bandgap. Reaching that noticeable bandgap in optics is highly demanding with current, and possibly also future materials platforms because their modulation strength is small by tendency. Here we demonstrate that by introducing temporal variations in a resonant material, the momentum bandgap can be drastically expanded with modulation strengths in reach with known low-loss materials and realistic laser pump powers. The resonance can emerge from an intrinsic material resonance or a suitably spatially structured material supporting a structural resonance. Our concept is validated for resonant bulk media and optical metasurfaces and paves the way towards the first experimental realizations of photonic time crystals.</p>","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"1 1","pages":""},"PeriodicalIF":35.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Chemical Reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1