David Danovich, Alexandre Tkatchenko, Santiago Alvarez and Sason Shaik*,
{"title":"A Gravitational-like Relationship of Dispersion Interactions is Exhibited by 40 Pairs of Molecules and Noble Gas Atoms","authors":"David Danovich, Alexandre Tkatchenko, Santiago Alvarez and Sason Shaik*, ","doi":"10.1021/jacs.4c1121110.1021/jacs.4c11211","DOIUrl":null,"url":null,"abstract":"<p >We present computational results of many-body dispersion (MBD) interactions for 40 pairs of molecular and atomic species: hydrocarbons, silanes, corresponding fluorinated derivatives, pairs which have multiple H---H contacts between the molecules, as well as pairs having π–π interactions, and pairs of noble gases. The calculations reveal that the MBD stabilization energy (<i>E</i><sub>DISP,MBD</sub>) obeys a global relationship, which is <i>gravitational-like</i>. It is proportional to the product of the masses of the two molecules (<i>M</i><sub>1</sub><i>M</i><sub>2</sub>) and inversely proportional to the corresponding distances between the molecular centers-of-mass (<i>R</i><sub>COM-COM</sub>) or the H---H distances of the atoms mediating the interactions of the two molecules (<i>R</i><sub>H–H</sub>). This relationship reflects the interactions of instantaneous dipoles, which are formed by the ensemble of bonds/atoms in the interacting molecules. Using the D4-corrected dispersion energy (<i>E</i><sub>DISP,D4</sub>), which accounts for three-body interactions, we find that the <i>E</i><sub>DISP,MBD</sub> and <i>E</i><sub>DISP,D4</sub> data sets are strongly correlated. Based on valence-bond modeling, the dispersion interactions occur primarily due to the increased contributions of the oscillating-ionic VB structures which maintain favorable electrostatic interactions; the [Sub─C<sup>+</sup>:H<sup>–+</sup>H:C<sup>–</sup>─Sub] and [Sub─C:<sup>–+</sup>H <sup>–</sup>H:C<sup>+</sup>─Sub] structures; Sub symbolizes general residues. This augmented contribution is complemented by simultaneously diminished-weights of the destabilizing pair of structures, [Sub─C<sup>+</sup>:H<sup>––</sup>H:C<sup>+</sup>─Sub] and [Sub─:C<sup>–</sup> H<sup>++</sup>H:C<sup>–</sup>─Sub]. The local charges are propagated to the entire ensemble of bonds/atoms by partially charging the Sub residues, thus bringing about the “gravitational-like” dependence of dispersion.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 45","pages":"31198–31204 31198–31204"},"PeriodicalIF":14.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c11211","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c11211","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present computational results of many-body dispersion (MBD) interactions for 40 pairs of molecular and atomic species: hydrocarbons, silanes, corresponding fluorinated derivatives, pairs which have multiple H---H contacts between the molecules, as well as pairs having π–π interactions, and pairs of noble gases. The calculations reveal that the MBD stabilization energy (EDISP,MBD) obeys a global relationship, which is gravitational-like. It is proportional to the product of the masses of the two molecules (M1M2) and inversely proportional to the corresponding distances between the molecular centers-of-mass (RCOM-COM) or the H---H distances of the atoms mediating the interactions of the two molecules (RH–H). This relationship reflects the interactions of instantaneous dipoles, which are formed by the ensemble of bonds/atoms in the interacting molecules. Using the D4-corrected dispersion energy (EDISP,D4), which accounts for three-body interactions, we find that the EDISP,MBD and EDISP,D4 data sets are strongly correlated. Based on valence-bond modeling, the dispersion interactions occur primarily due to the increased contributions of the oscillating-ionic VB structures which maintain favorable electrostatic interactions; the [Sub─C+:H–+H:C–─Sub] and [Sub─C:–+H –H:C+─Sub] structures; Sub symbolizes general residues. This augmented contribution is complemented by simultaneously diminished-weights of the destabilizing pair of structures, [Sub─C+:H––H:C+─Sub] and [Sub─:C– H++H:C–─Sub]. The local charges are propagated to the entire ensemble of bonds/atoms by partially charging the Sub residues, thus bringing about the “gravitational-like” dependence of dispersion.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.