In Situ Self-Inflating-Modeled Giant-Vesicle-Like Quantum Dot Assembly for Biomimetic Artificial Photosynthesis

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-10-30 DOI:10.1021/acsnano.4c1272810.1021/acsnano.4c12728
Jing Liu, Zi-Hao Liao, Ting Zhu, Jin Wu and Feng Wang*, 
{"title":"In Situ Self-Inflating-Modeled Giant-Vesicle-Like Quantum Dot Assembly for Biomimetic Artificial Photosynthesis","authors":"Jing Liu,&nbsp;Zi-Hao Liao,&nbsp;Ting Zhu,&nbsp;Jin Wu and Feng Wang*,&nbsp;","doi":"10.1021/acsnano.4c1272810.1021/acsnano.4c12728","DOIUrl":null,"url":null,"abstract":"<p >The study of biomimetic self-assembly is crucial for scientists aiming to understand the origin of life and construct biomimetic functional structures. In our endeavor to create a biomimetic photosynthetic assembly, we discover a self-inflation behavior that drives the components, MPA-CdSe quantum dots (QDs) and a solid cationic polyelectrolyte, <b>CPPA</b>, to form a giant-vesicle-like (GVL) architecture, termed <b>GVL-QDs@CPPA</b>. The <i>in situ</i> generation of osmotic pressure during the self-assembly of QDs onto swollen <b>CPPA</b> in water was found to cause this self-inflation process. The resulting vesicle-like structure exhibits spatial characteristics similar to those of natural photosynthetic cells, with QDs acting as pigments uniformly distributed on the <b>CPPA</b> membranes, which have embedded cobalt catalytic centers. This architecture ensures optimal absorption of visible light and facilitates efficient electron transfer between the QDs and catalytic centers. As a result, <b>GVL-QDs@CPPA</b> assemblies efficiently harness photogenerated electrons and holes to convert protons and isopropanol into hydrogen (H<sub>2</sub>) and acetone, respectively, achieving a nearly 1:1 ratio of the reduction product (H<sub>2</sub>) to the oxidation product (acetone).</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 45","pages":"31537–31546 31537–31546"},"PeriodicalIF":15.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c12728","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The study of biomimetic self-assembly is crucial for scientists aiming to understand the origin of life and construct biomimetic functional structures. In our endeavor to create a biomimetic photosynthetic assembly, we discover a self-inflation behavior that drives the components, MPA-CdSe quantum dots (QDs) and a solid cationic polyelectrolyte, CPPA, to form a giant-vesicle-like (GVL) architecture, termed GVL-QDs@CPPA. The in situ generation of osmotic pressure during the self-assembly of QDs onto swollen CPPA in water was found to cause this self-inflation process. The resulting vesicle-like structure exhibits spatial characteristics similar to those of natural photosynthetic cells, with QDs acting as pigments uniformly distributed on the CPPA membranes, which have embedded cobalt catalytic centers. This architecture ensures optimal absorption of visible light and facilitates efficient electron transfer between the QDs and catalytic centers. As a result, GVL-QDs@CPPA assemblies efficiently harness photogenerated electrons and holes to convert protons and isopropanol into hydrogen (H2) and acetone, respectively, achieving a nearly 1:1 ratio of the reduction product (H2) to the oxidation product (acetone).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于仿生人工光合作用的原位自充气模型化巨型囊泡状量子点组装技术
对旨在了解生命起源和构建仿生功能结构的科学家来说,研究仿生自组装至关重要。在努力创建仿生光合作用组装体的过程中,我们发现了一种自膨胀行为,它能驱动 MPA-CdSe 量子点(QDs)和固体阳离子聚电解质 CPPA 这两种成分形成一种巨囊状(GVL)结构,即 GVL-QDs@CPPA。研究发现,QDs 在水中自组装到膨胀的 CPPA 上的过程中原位产生的渗透压导致了这一自膨胀过程。由此产生的囊泡状结构具有与天然光合作用细胞相似的空间特性,QDs 作为色素均匀地分布在 CPPA 膜上,CPPA 膜上嵌入了钴催化中心。这种结构确保了对可见光的最佳吸收,并促进了 QDs 和催化中心之间有效的电子转移。因此,GVL-QDs@CPPA 组件能有效利用光产生的电子和空穴,将质子和异丙醇分别转化为氢(H2)和丙酮,使还原产物(H2)与氧化产物(丙酮)的比例接近 1:1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Amplification of Metalloregulatory Proteins in Macrophages by Bioactive ZnMn@SF Hydrogels for Spinal Cord Injury Repair In Situ Phase Transformation-Enabled Metal–Organic Frameworks for Efficient CO2 Electroreduction to Multicarbon Products in Strong Acidic Media Voltage-Gated Switching of Moiré Patterns in Epitaxial Molecular Crystals Correction to “Sequential Treatment of Bioresponsive Nanoparticles Elicits Antiangiogenesis and Apoptosis and Synergizes with a CD40 Agonist for Antitumor Immunity” Ultrahigh Surface Area Nanoporous Carbons Synthesized via Hypergolic and Activation Reactions for Enhanced CO2 Capacity and Volumetric Energy Density
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1