Yang Zhao, Xiaohui Zhu, Qinghua Zhang, Lin Gu, Zhengyi Shi, Ce Qiu, Tingting Chen, Mingzhu Ni, Yuhang Zhuang, Serguei V. Savilov, Sergey M. Aldoshin, Hui Xia
{"title":"High-Na-Content Birnessite via P′3-Stacking with Tunable Active Facets for Advanced Aqueous Sodium-Ion Batteries","authors":"Yang Zhao, Xiaohui Zhu, Qinghua Zhang, Lin Gu, Zhengyi Shi, Ce Qiu, Tingting Chen, Mingzhu Ni, Yuhang Zhuang, Serguei V. Savilov, Sergey M. Aldoshin, Hui Xia","doi":"10.1021/acsnano.4c09448","DOIUrl":null,"url":null,"abstract":"Layered Na-birnessites are promising cathode materials for aqueous sodium-ion batteries due to their high theoretical capacity, low cost, and environmental benignity. However, the general O′3 Na-birnessites possess low Na content and dominant inactive {001} exposed facets, which compromise their Na storage capability and cycling stability. Herein, we develop a high-Na-content P′3-Na<sub>0.71</sub>MnO<sub>2</sub>·0.15H<sub>2</sub>O with highly enriched {010} active facets by a hydrothermal conversion method. In comparison with the O′3 Na-birnessite, the P′3 Na-birnessite with a high ratio of {010}/{001} exposed facets provides greatly increased open channels for Na<sup>+</sup> diffusion, while the P′3 stacking affords a lower Na<sup>+</sup> diffusion barrier, resulting in improved electrode kinetics with a large specific capacity of 176 mAh g<sup>–1</sup> at 0.2 A g<sup>–1</sup>. More importantly, the P′3 Na-birnessite manifests solo Na<sup>+</sup> intercalation/deintercalation with extraordinary cycling stability in an aqueous electrolyte, achieving 90.5% capacity retention after 60,000 cycles. When coupled with the NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> anode, the P′3 Na-birnessite-based full cell delivers both high energy density and long cycle life, demonstrating the potential application in aqueous sodium-ion batteries. This study demonstrates an efficient method to prepare high-Na-content P′3 birnessite with tunable exposed facets and provides important insights into developing highly stable layered cathodes for sustainable aqueous sodium-ion batteries.","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":"11 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c09448","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Layered Na-birnessites are promising cathode materials for aqueous sodium-ion batteries due to their high theoretical capacity, low cost, and environmental benignity. However, the general O′3 Na-birnessites possess low Na content and dominant inactive {001} exposed facets, which compromise their Na storage capability and cycling stability. Herein, we develop a high-Na-content P′3-Na0.71MnO2·0.15H2O with highly enriched {010} active facets by a hydrothermal conversion method. In comparison with the O′3 Na-birnessite, the P′3 Na-birnessite with a high ratio of {010}/{001} exposed facets provides greatly increased open channels for Na+ diffusion, while the P′3 stacking affords a lower Na+ diffusion barrier, resulting in improved electrode kinetics with a large specific capacity of 176 mAh g–1 at 0.2 A g–1. More importantly, the P′3 Na-birnessite manifests solo Na+ intercalation/deintercalation with extraordinary cycling stability in an aqueous electrolyte, achieving 90.5% capacity retention after 60,000 cycles. When coupled with the NaTi2(PO4)3 anode, the P′3 Na-birnessite-based full cell delivers both high energy density and long cycle life, demonstrating the potential application in aqueous sodium-ion batteries. This study demonstrates an efficient method to prepare high-Na-content P′3 birnessite with tunable exposed facets and provides important insights into developing highly stable layered cathodes for sustainable aqueous sodium-ion batteries.
期刊介绍:
The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.