{"title":"Salt-Concentrated Electrolyte Constructing High Elasticity Modulus Interphase for Li-Rich Layered Oxide Cathode","authors":"Zhijie Han, Yuan Liang, Shu Zhao, Qianwen Zhu, Jingteng Zhao, Errui Wang, Shiqi Liu, Boya Wang, Congyu Xu, Bing Yu, Haijun Yu","doi":"10.1021/acsami.4c10787","DOIUrl":null,"url":null,"abstract":"Stable electrolytes are urgently required for lithium-ion batteries based on lithium-rich layered oxides (LLOs), which generally suffer from fast capacity and voltage decay at high voltages up to 4.8 V. Herein, we report a salt-concentrated electrolyte consisting of 4 M lithium hexafluorophosphate (LiPF<sub>6</sub>) salt in ester solvents of fluoroethylene carbonate (FEC) and dimethyl carbonate (DMC) to alleviate the above challenges. The solvent structure in the 4 M electrolyte shows more volatile DMC integrated with Li<sup>+</sup> and more free antioxidative FEC compared with a 1 M electrolyte, broadening the operation voltage. Simultaneously, this electrolyte endows a thin yet high elasticity modulus LiF-rich interphase on the LLOs surface, which can effectively prevent diverse side reactions and transition metal migration, consequently improving the electrochemical performance with a voltage decay of only 0.46 mV/cycle and capacity retention of 80.3% after 500 cycles. This simple and effective approach boosts the development of high-energy-density batteries using LLOs.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"196 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c10787","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Stable electrolytes are urgently required for lithium-ion batteries based on lithium-rich layered oxides (LLOs), which generally suffer from fast capacity and voltage decay at high voltages up to 4.8 V. Herein, we report a salt-concentrated electrolyte consisting of 4 M lithium hexafluorophosphate (LiPF6) salt in ester solvents of fluoroethylene carbonate (FEC) and dimethyl carbonate (DMC) to alleviate the above challenges. The solvent structure in the 4 M electrolyte shows more volatile DMC integrated with Li+ and more free antioxidative FEC compared with a 1 M electrolyte, broadening the operation voltage. Simultaneously, this electrolyte endows a thin yet high elasticity modulus LiF-rich interphase on the LLOs surface, which can effectively prevent diverse side reactions and transition metal migration, consequently improving the electrochemical performance with a voltage decay of only 0.46 mV/cycle and capacity retention of 80.3% after 500 cycles. This simple and effective approach boosts the development of high-energy-density batteries using LLOs.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.