Yang Feng, Zixi Kang, Zhikun Wang, Zhanning Liu, Q. Jason Niu, Weidong Fan, Lu Qiao, Jia Pang, Hu Chang, Xiaolei Cui, Lili Fan, Hailing Guo, Rongming Wang, Dan Zhao, Daofeng Sun
{"title":"Preprocessed Monomer Interfacial Polymerization for Scalable Fabrication of High-Valent Cluster-Based Metal–Organic Framework Membranes","authors":"Yang Feng, Zixi Kang, Zhikun Wang, Zhanning Liu, Q. Jason Niu, Weidong Fan, Lu Qiao, Jia Pang, Hu Chang, Xiaolei Cui, Lili Fan, Hailing Guo, Rongming Wang, Dan Zhao, Daofeng Sun","doi":"10.1021/jacs.4c10241","DOIUrl":null,"url":null,"abstract":"Current research on emergent membrane materials with ordered and stable nanoporous structures often overlooks the vital facet of manufacturing scalability. We propose the preprocessed monomer interfacial polymerization (PMIP) strategy for the scalable fabrication of high-valent cluster-based metal–organic framework (MOF) membranes with robust structures. Using a roll-to-roll device on commercial polymer supports, Zr-fum-MOF membranes are continuously processed at room temperature through the PMIP approach. These large-area membranes demonstrate the preeminent hydrogen separation capabilities, boasting an order of magnitude of permeance and a thrice-enhanced selectivity when juxtaposed with conventional polymeric membranes. The obtained PMIP-Zr-fum-MOF membranes possess superior stability in water compared with interfacial polymerization (IP)-processed low-valent metal-ion-based ZIF-8 membranes. Moreover, we have implemented the PMIP strategy’s universality to process the other four diverse MOF membranes. The proposal of PMIP significantly advances the scalable fabrication of water-stable high-valent cluster MOF membranes.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c10241","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Current research on emergent membrane materials with ordered and stable nanoporous structures often overlooks the vital facet of manufacturing scalability. We propose the preprocessed monomer interfacial polymerization (PMIP) strategy for the scalable fabrication of high-valent cluster-based metal–organic framework (MOF) membranes with robust structures. Using a roll-to-roll device on commercial polymer supports, Zr-fum-MOF membranes are continuously processed at room temperature through the PMIP approach. These large-area membranes demonstrate the preeminent hydrogen separation capabilities, boasting an order of magnitude of permeance and a thrice-enhanced selectivity when juxtaposed with conventional polymeric membranes. The obtained PMIP-Zr-fum-MOF membranes possess superior stability in water compared with interfacial polymerization (IP)-processed low-valent metal-ion-based ZIF-8 membranes. Moreover, we have implemented the PMIP strategy’s universality to process the other four diverse MOF membranes. The proposal of PMIP significantly advances the scalable fabrication of water-stable high-valent cluster MOF membranes.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.