Jinzhe Zhang, Hongjun Lyu, Jie Chen, Xue Cao, Ran Du, Liang Ma, Nan Wang, Zhiguo Zhu, Jianglei Rao, Jie Wang, Kui Zhong, Yaqing Lyu, Yanling Wang, Tao Lin, Yao Zhou, Yongfeng Zhou, Guangtao Zhu, Zhangjun Fei, Harry Klee, Sanwen Huang
{"title":"Releasing a sugar brake generates sweeter tomato without yield penalty","authors":"Jinzhe Zhang, Hongjun Lyu, Jie Chen, Xue Cao, Ran Du, Liang Ma, Nan Wang, Zhiguo Zhu, Jianglei Rao, Jie Wang, Kui Zhong, Yaqing Lyu, Yanling Wang, Tao Lin, Yao Zhou, Yongfeng Zhou, Guangtao Zhu, Zhangjun Fei, Harry Klee, Sanwen Huang","doi":"10.1038/s41586-024-08186-2","DOIUrl":null,"url":null,"abstract":"<p>In tomato, sugar content is highly correlated with consumer preferences, with most consumers preferring sweeter fruit<sup>1,2,3,4</sup>. However, the sugar content of commercial varieties is generally low, as it is inversely correlated with fruit size, and growers prioritize yield over flavour quality<sup>5,6,7</sup>. Here we identified two genes, tomato (<i>Solanum lycopersicum</i>) <i>calcium-dependent protein kinase 27</i> (Sl<i>CDPK27</i>; also known as Sl<i>CPK2</i>7) and its paralogue Sl<i>CDPK26</i>, that control fruit sugar content. They act as sugar brakes by phosphorylating a sucrose synthase, which promotes degradation of the sucrose synthase. Gene-edited Sl<i>CDPK27</i> and Sl<i>CDPK26</i> knockouts increased glucose and fructose contents by up to 30%, enhancing perceived sweetness without fruit weight or yield penalty. Although there are fewer, lighter seeds in the mutants, they exhibit normal germination. Together, these findings provide insight into the regulatory mechanisms controlling fruit sugar accumulation in tomato and offer opportunities to increase sugar content in large-fruited cultivars without sacrificing size and yield.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08186-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In tomato, sugar content is highly correlated with consumer preferences, with most consumers preferring sweeter fruit1,2,3,4. However, the sugar content of commercial varieties is generally low, as it is inversely correlated with fruit size, and growers prioritize yield over flavour quality5,6,7. Here we identified two genes, tomato (Solanum lycopersicum) calcium-dependent protein kinase 27 (SlCDPK27; also known as SlCPK27) and its paralogue SlCDPK26, that control fruit sugar content. They act as sugar brakes by phosphorylating a sucrose synthase, which promotes degradation of the sucrose synthase. Gene-edited SlCDPK27 and SlCDPK26 knockouts increased glucose and fructose contents by up to 30%, enhancing perceived sweetness without fruit weight or yield penalty. Although there are fewer, lighter seeds in the mutants, they exhibit normal germination. Together, these findings provide insight into the regulatory mechanisms controlling fruit sugar accumulation in tomato and offer opportunities to increase sugar content in large-fruited cultivars without sacrificing size and yield.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).