Weikai Chen, Ming Yan, Shaoying Chen, Jie Sun, Jingxuan Wang, Dian Meng, Jun Li, Lili Zhang, Li Guo
{"title":"The complete genome assembly of Nicotiana benthamiana reveals the genetic and epigenetic landscape of centromeres","authors":"Weikai Chen, Ming Yan, Shaoying Chen, Jie Sun, Jingxuan Wang, Dian Meng, Jun Li, Lili Zhang, Li Guo","doi":"10.1038/s41477-024-01849-y","DOIUrl":null,"url":null,"abstract":"<p><i>Nicotiana benthamiana</i> is a model organism widely adopted in plant biology. Its complete assembly remains unavailable despite several recent improvements. To further improve its usefulness, we generate and phase the complete 2.85 Gb genome assembly of allotetraploid <i>N. benthamiana</i>. We find that although Solanaceae centromeres are widely dominated by Ty3/Gypsy retrotransposons, satellite-based centromeres are surprisingly common in <i>N. benthamiana</i>, with 11 of 19 centromeres featured by megabase-scale satellite arrays. Interestingly, the satellite-enriched and satellite-free centromeres are extensively invaded by distinct Gypsy retrotransposons which CENH3 protein more preferentially occupies, suggestive of their crucial roles in centromere function. We demonstrate that ribosomal DNA is a major origin of centromeric satellites, and mitochondrial DNA could be employed as a core component of the centromere. Subgenome analysis indicates that the emergence of satellite arrays probably drives new centromere formation. Altogether, we propose that <i>N. benthamiana</i> centromeres evolved via neocentromere formation, satellite expansion, retrotransposon enrichment and mtDNA integration.</p>","PeriodicalId":15,"journal":{"name":"ACS Earth and Space Chemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Earth and Space Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41477-024-01849-y","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nicotiana benthamiana is a model organism widely adopted in plant biology. Its complete assembly remains unavailable despite several recent improvements. To further improve its usefulness, we generate and phase the complete 2.85 Gb genome assembly of allotetraploid N. benthamiana. We find that although Solanaceae centromeres are widely dominated by Ty3/Gypsy retrotransposons, satellite-based centromeres are surprisingly common in N. benthamiana, with 11 of 19 centromeres featured by megabase-scale satellite arrays. Interestingly, the satellite-enriched and satellite-free centromeres are extensively invaded by distinct Gypsy retrotransposons which CENH3 protein more preferentially occupies, suggestive of their crucial roles in centromere function. We demonstrate that ribosomal DNA is a major origin of centromeric satellites, and mitochondrial DNA could be employed as a core component of the centromere. Subgenome analysis indicates that the emergence of satellite arrays probably drives new centromere formation. Altogether, we propose that N. benthamiana centromeres evolved via neocentromere formation, satellite expansion, retrotransposon enrichment and mtDNA integration.
期刊介绍:
The scope of ACS Earth and Space Chemistry includes the application of analytical, experimental and theoretical chemistry to investigate research questions relevant to the Earth and Space. The journal encompasses the highly interdisciplinary nature of research in this area, while emphasizing chemistry and chemical research tools as the unifying theme. The journal publishes broadly in the domains of high- and low-temperature geochemistry, atmospheric chemistry, marine chemistry, planetary chemistry, astrochemistry, and analytical geochemistry. ACS Earth and Space Chemistry publishes Articles, Letters, Reviews, and Features to provide flexible formats to readily communicate all aspects of research in these fields.