Butadiene hydrogenation on N-doped carbon-hosted non-noble metal nanostructures

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Applied Surface Science Pub Date : 2024-11-14 DOI:10.1016/j.apsusc.2024.161787
Xintai Chen, Zhibing Chen, Luyao Guo, Yali Lv, Xiaoling Mou, Jiaxu Liu, Li Yan, Ronghe Lin, Yunjie Ding
{"title":"Butadiene hydrogenation on N-doped carbon-hosted non-noble metal nanostructures","authors":"Xintai Chen, Zhibing Chen, Luyao Guo, Yali Lv, Xiaoling Mou, Jiaxu Liu, Li Yan, Ronghe Lin, Yunjie Ding","doi":"10.1016/j.apsusc.2024.161787","DOIUrl":null,"url":null,"abstract":"Diverse N-doped carbon-supported non-noble metal nanostructures (Ni, Co, Fe, Cu) are designed, and explored in selective butadiene hydrogenation. Focusing on particle size and composition, optimal catalytic performance is observed with Ni catalysts, where smaller metallic Ni particles of ca. 6.2 nm exhibit superior activity and larger ones (14–47 nm) display much higher total butene selectivity. An integral approach combining detailed kinetics, chemisorption, and dual-beam Fourier transform infrared spectroscopic study is performed to rationalize the Ni particle size effect. The findings reveal that smaller Ni particles offer improved activation of butadiene and hydrogen due to advantageous adsorption dynamics. Spectroscopic examinations further suggest different adsorption configurations existing on Ni particles, with larger particles displaying strong π-adsorption, which impedes hydrogen replacement. Additionally, the stability of the catalysts is scrutinized under various reaction conditions, revealing that deactivation occurs more rapidly at lower temperatures, primarily due to mild coke deposition.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"69 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2024.161787","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Diverse N-doped carbon-supported non-noble metal nanostructures (Ni, Co, Fe, Cu) are designed, and explored in selective butadiene hydrogenation. Focusing on particle size and composition, optimal catalytic performance is observed with Ni catalysts, where smaller metallic Ni particles of ca. 6.2 nm exhibit superior activity and larger ones (14–47 nm) display much higher total butene selectivity. An integral approach combining detailed kinetics, chemisorption, and dual-beam Fourier transform infrared spectroscopic study is performed to rationalize the Ni particle size effect. The findings reveal that smaller Ni particles offer improved activation of butadiene and hydrogen due to advantageous adsorption dynamics. Spectroscopic examinations further suggest different adsorption configurations existing on Ni particles, with larger particles displaying strong π-adsorption, which impedes hydrogen replacement. Additionally, the stability of the catalysts is scrutinized under various reaction conditions, revealing that deactivation occurs more rapidly at lower temperatures, primarily due to mild coke deposition.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
丁二烯在掺杂 N 的碳托管非贵金属纳米结构上的氢化作用
我们设计了多种掺杂 N 的碳支撑非贵金属纳米结构(Ni、Co、Fe、Cu),并在选择性丁二烯氢化中进行了探索。以颗粒大小和组成为重点,观察到镍催化剂具有最佳催化性能,其中约 6.2 纳米的较小金属镍颗粒显示出卓越的活性,而较大的金属镍颗粒(14-47 纳米)则显示出更高的总丁烯选择性。为了合理解释镍颗粒尺寸效应,研究人员采用了一种综合方法,将详细的动力学、化学吸附和双光束傅立叶变换红外光谱研究结合起来。研究结果表明,由于具有吸附动力学优势,较小的镍颗粒能更好地活化丁二烯和氢气。光谱检测进一步表明,镍颗粒上存在不同的吸附构型,较大的颗粒显示出较强的π吸附,阻碍了氢的置换。此外,还对催化剂在各种反应条件下的稳定性进行了仔细研究,结果表明,在较低温度下,失活发生得更快,这主要是由于轻度焦炭沉积所致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
期刊最新文献
Ultrathin Ti3C2Tx MXene/Cellulose nanofiber composite film for enhanced mechanics & EMI shielding via freeze-thaw intercalation In-situ homologous bromine vacancies for enhanced C-Br bond activation and rapid debromination of decabromodiphenyl ether Oxygen vacancies-promoted oxidative esterification of ethylene glycol to methyl glycolate over Au/ZnO catalyst Photocatalytic dye removal with ZnO/Laser-Induced graphene nanocomposite Corrigendum to “A comparative nanotribological investigation on amorphous and polycrystalline forms of MoS2” [Appl. Surf. Sci. 672 (2024) 16042]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1