{"title":"Analytical framework for nanofiltration processes with imperfect rejection and its application to curcumin concentration","authors":"Milana M. Mavinkurve, Yagnaseni Roy","doi":"10.1016/j.seppur.2024.130426","DOIUrl":null,"url":null,"abstract":"Organic solvent nanofiltration (OSN) performance is influenced by several factors, including the solvent, membrane, transmembrane pressure, system size, flowrate, and desired end concentration. System design and optimization of such a complex process requires a unified framework so that the effect of each influence can be compared quantitatively in a single plot. To that effect, a mathematical framework was derived by functionally relating the target quantities (solute yield and solvent recovery) interconnected by the mass balances of each species. The plot obtained indicates solute-solvent selectivity, solute yield, solvent recovery, closeness to the saturation concentration, and a comparison of system sizes; hence when plotted for varied operating conditions and solvent-membrane systems, such a plot is instructive to improved system design. In the current paper, this framework is illustrated for OSN implemented for curcumin extract concentration. Two membranes (Evonik Puramem Performance, PMP, and Evonik Puramem Selective, PMS) were compared at various pressures on a single plot. The key output values obtained are solute yield, solvent recovery, system size comparison, and permeate bulk solute concentration. It was shown using the framework that when operated at 10 bar, the PMS membrane has a higher solute yield (180%); however, it requires a larger membrane area (25%) to reach saturation, compared to PMP. Finally, the effect of concentration polarization on the separation is demonstrated using the framework.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"93 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2024.130426","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Organic solvent nanofiltration (OSN) performance is influenced by several factors, including the solvent, membrane, transmembrane pressure, system size, flowrate, and desired end concentration. System design and optimization of such a complex process requires a unified framework so that the effect of each influence can be compared quantitatively in a single plot. To that effect, a mathematical framework was derived by functionally relating the target quantities (solute yield and solvent recovery) interconnected by the mass balances of each species. The plot obtained indicates solute-solvent selectivity, solute yield, solvent recovery, closeness to the saturation concentration, and a comparison of system sizes; hence when plotted for varied operating conditions and solvent-membrane systems, such a plot is instructive to improved system design. In the current paper, this framework is illustrated for OSN implemented for curcumin extract concentration. Two membranes (Evonik Puramem Performance, PMP, and Evonik Puramem Selective, PMS) were compared at various pressures on a single plot. The key output values obtained are solute yield, solvent recovery, system size comparison, and permeate bulk solute concentration. It was shown using the framework that when operated at 10 bar, the PMS membrane has a higher solute yield (180%); however, it requires a larger membrane area (25%) to reach saturation, compared to PMP. Finally, the effect of concentration polarization on the separation is demonstrated using the framework.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.