An integrated off-lattice kinetic Monte Carlo (KMC)-molecular dynamics (MD) framework for modeling polyvinyl chloride dehydrochlorination

IF 4.1 2区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Science Pub Date : 2024-11-14 DOI:10.1016/j.ces.2024.120928
Feranmi V. Olowookere, C. Heath Turner
{"title":"An integrated off-lattice kinetic Monte Carlo (KMC)-molecular dynamics (MD) framework for modeling polyvinyl chloride dehydrochlorination","authors":"Feranmi V. Olowookere, C. Heath Turner","doi":"10.1016/j.ces.2024.120928","DOIUrl":null,"url":null,"abstract":"In this study, a three-dimensional off-lattice kinetic Monte Carlo-Molecular Dynamics (KMC-MD) simulation framework [<em>Comp. Mat. Sci.</em> 229, 112421 (2023)] is used to investigate the dehydrochlorination/conjugation transformation of polyvinyl chloride (PVC) in sodium hydroxide (NaOH) with atomistic resolutions at experimental timescales (10<sup>3</sup> – 10<sup>6</sup> s). Our framework enables an examination of the competing reaction pathways and molecular-scale changes influenced by various solvents (acetone, ethylene glycol, triethylene glycol, tetrahydrofuran, and bio-derived solvents), as well as the influence of varying molecular weight distributions, NaOH concentrations, and temperatures. The algorithm simulates bond cleavage and formation during the KMC stages, whereas the MD stage is dedicated to the relaxation and thermalization of the PVC-NaOH-solvent system. The framework allows us to capture important configurational aspects (mixing, correlations, clustering, etc.) that are not accessible with a traditional microkinetic model, and it potentially allows us to perform benchmarking at experimental timescales","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ces.2024.120928","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a three-dimensional off-lattice kinetic Monte Carlo-Molecular Dynamics (KMC-MD) simulation framework [Comp. Mat. Sci. 229, 112421 (2023)] is used to investigate the dehydrochlorination/conjugation transformation of polyvinyl chloride (PVC) in sodium hydroxide (NaOH) with atomistic resolutions at experimental timescales (103 – 106 s). Our framework enables an examination of the competing reaction pathways and molecular-scale changes influenced by various solvents (acetone, ethylene glycol, triethylene glycol, tetrahydrofuran, and bio-derived solvents), as well as the influence of varying molecular weight distributions, NaOH concentrations, and temperatures. The algorithm simulates bond cleavage and formation during the KMC stages, whereas the MD stage is dedicated to the relaxation and thermalization of the PVC-NaOH-solvent system. The framework allows us to capture important configurational aspects (mixing, correlations, clustering, etc.) that are not accessible with a traditional microkinetic model, and it potentially allows us to perform benchmarking at experimental timescales

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于聚氯乙烯脱氢氯化建模的非晶格动力学蒙特卡罗(KMC)-分子动力学(MD)综合框架
本研究采用三维非晶格动力学蒙特卡洛-分子动力学(KMC-MD)模拟框架[Comp. Mat. Sci. 229, 112421 (2023)],以原子分辨率和实验时间尺度(103 - 106 秒)研究聚氯乙烯(PVC)在氢氧化钠(NaOH)中的脱氢氯化/共轭转化。通过我们的框架,可以研究受各种溶剂(丙酮、乙二醇、三甘醇、四氢呋喃和生物衍生溶剂)影响的竞争反应途径和分子尺度变化,以及不同分子量分布、NaOH 浓度和温度的影响。该算法在 KMC 阶段模拟键的断裂和形成,而 MD 阶段则专门用于 PVC-NaOH 溶剂体系的弛豫和热化。该框架使我们能够捕捉到传统微观动力学模型无法捕捉到的重要构型方面(混合、关联、聚类等),并有可能使我们在实验时间尺度上进行基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
期刊最新文献
Fluid dynamics of gas–liquid slug flow under the expansion effect in a microchannel Numerical evaluation of steam methane reforming process with sorption enhanced in the circulating fluidized riser reactor An integrated off-lattice kinetic Monte Carlo (KMC)-molecular dynamics (MD) framework for modeling polyvinyl chloride dehydrochlorination Assessment of scale-up designs for a diameter-transformed fluidized bed reactor with MP-PIC simulation Coalescence characteristics of bubbles from submerged micron-sized double-orifice plates: Experiments and modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1