{"title":"The n–π* electronic transition induced by nitrogen vacancies enhances photocatalytic hydrogen production in carbon nitride","authors":"Zhili Xu, Jing Li, Deyi Zhan, Yue Liu, Weihong Xu, Junfeng Wang, Zhiwu Yu","doi":"10.1016/j.cej.2024.157670","DOIUrl":null,"url":null,"abstract":"In semiconductor catalysts, long-lived excited states can effectually improve the utilization of photogenerated carriers to enhance photocatalytic performance. Herein, we used supramolecular engineering to synthesize a hollow tubular carbon nitride catalyst with N vacancies and an obvious n–π* transition. The unique hollow tubular structure provides abundant active sites, which are favorable for photocatalytic reaction. The presence of N vacancies expands the π-electron delocalization domains in the conjugated system, which excites the n–π* transition and thus triggers the red-shifted absorption edge at approximately 660 nm. Experiments and DFT calculations demonstrated that the N vacancies are beneficial for narrowing the bandgap and promoting the reduction of H<sup>+</sup> by photogenerated electrons. Femtosecond transient absorption spectroscopy (fs-TAS) indicated that the n–π* electronic transition in the carbon nitride photocatalyst leads to slower exciton annihilation (lifetime: 38.64 ± 10.6 ps) and extended shallow electron trapping states (lifetime: 325.9 ± 19.3 ps). The appearance of these states adds more photogenerated electrons to the photocatalytic reaction process. The optimal hollow tubular carbon nitride catalyst exhibits a hydrogen production rate of 2664.47 μmol∙g<sup>−1</sup>∙h<sup>−1</sup>, which is 31.2 times higher than that of bulk carbon nitride (85.3325 μmol∙g<sup>−1</sup>∙h<sup>−1</sup>). This work highlights the ability of the n–π* transition induced by N vacancies to enhance the photocatalytic activity of carbon nitride.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"5 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157670","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In semiconductor catalysts, long-lived excited states can effectually improve the utilization of photogenerated carriers to enhance photocatalytic performance. Herein, we used supramolecular engineering to synthesize a hollow tubular carbon nitride catalyst with N vacancies and an obvious n–π* transition. The unique hollow tubular structure provides abundant active sites, which are favorable for photocatalytic reaction. The presence of N vacancies expands the π-electron delocalization domains in the conjugated system, which excites the n–π* transition and thus triggers the red-shifted absorption edge at approximately 660 nm. Experiments and DFT calculations demonstrated that the N vacancies are beneficial for narrowing the bandgap and promoting the reduction of H+ by photogenerated electrons. Femtosecond transient absorption spectroscopy (fs-TAS) indicated that the n–π* electronic transition in the carbon nitride photocatalyst leads to slower exciton annihilation (lifetime: 38.64 ± 10.6 ps) and extended shallow electron trapping states (lifetime: 325.9 ± 19.3 ps). The appearance of these states adds more photogenerated electrons to the photocatalytic reaction process. The optimal hollow tubular carbon nitride catalyst exhibits a hydrogen production rate of 2664.47 μmol∙g−1∙h−1, which is 31.2 times higher than that of bulk carbon nitride (85.3325 μmol∙g−1∙h−1). This work highlights the ability of the n–π* transition induced by N vacancies to enhance the photocatalytic activity of carbon nitride.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.