Controlling the microenvironment by introducing dual metal atoms into ZIF-L to enhance hydrogen evolution activity

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Applied Surface Science Pub Date : 2024-11-14 DOI:10.1016/j.apsusc.2024.161791
Yongteng Qian, Yue Sun, Fangfang Zhang, Yupeng Song, Xiaohui Luo, Lin Shen, Minkyun Sohn, Hu Shi, Dae Joon Kang
{"title":"Controlling the microenvironment by introducing dual metal atoms into ZIF-L to enhance hydrogen evolution activity","authors":"Yongteng Qian, Yue Sun, Fangfang Zhang, Yupeng Song, Xiaohui Luo, Lin Shen, Minkyun Sohn, Hu Shi, Dae Joon Kang","doi":"10.1016/j.apsusc.2024.161791","DOIUrl":null,"url":null,"abstract":"In this study, we introduce an efficient strategy to enhance the electrocatalytic performance of ZIF-L by injecting dual metal atoms, specifically Co and Cu, using a facile hydrothermal reaction method. The optimized Co,Cu-ZIF-L composites showed exceptional hydrogen evolution activities with overpotentials of 70 and 145 mV under 10 and 50 mA cm<sup>−2</sup> in alkaline media. The Co,Cu-ZIF-L composites also displayed excellent cycling stability (∼ 90 h) for hydrogen evolution. The enhanced electrocatalytic performance is attributed to the dual metal atoms, which not only introduce abundant active sites but also improve the structural integrity and catalytic kinetics by regulating the catalytic microenvironment. Density functional theory calculations further support that the injection of Co and Cu atoms into the ZIF-L optimizes the free adsorption energy of hydrogen intermediates, accelerating HER kinetics. This work confirms that injecting highly conductive metal atom into MOFs to regulate the catalytic microenvironment is a potential route to significantly increase the electrocatalytic activity of MOFs.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"44 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2024.161791","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we introduce an efficient strategy to enhance the electrocatalytic performance of ZIF-L by injecting dual metal atoms, specifically Co and Cu, using a facile hydrothermal reaction method. The optimized Co,Cu-ZIF-L composites showed exceptional hydrogen evolution activities with overpotentials of 70 and 145 mV under 10 and 50 mA cm−2 in alkaline media. The Co,Cu-ZIF-L composites also displayed excellent cycling stability (∼ 90 h) for hydrogen evolution. The enhanced electrocatalytic performance is attributed to the dual metal atoms, which not only introduce abundant active sites but also improve the structural integrity and catalytic kinetics by regulating the catalytic microenvironment. Density functional theory calculations further support that the injection of Co and Cu atoms into the ZIF-L optimizes the free adsorption energy of hydrogen intermediates, accelerating HER kinetics. This work confirms that injecting highly conductive metal atom into MOFs to regulate the catalytic microenvironment is a potential route to significantly increase the electrocatalytic activity of MOFs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过在 ZIF-L 中引入双金属原子来控制微环境,从而提高氢进化活性
在本研究中,我们采用一种简便的水热反应方法,通过注入双金属原子(特别是 Co 和 Cu)来提高 ZIF-L 的电催化性能。优化后的 Co、Cu-ZIF-L 复合材料在碱性介质中 10 mA cm-2 和 50 mA cm-2 条件下的过电位分别为 70 mV 和 145 mV,显示出卓越的氢进化活性。Co、Cu-ZIF-L 复合材料还显示出卓越的氢进化循环稳定性(∼ 90 h)。电催化性能的提高归功于双金属原子,它们不仅引入了丰富的活性位点,还通过调节催化微环境改善了结构的完整性和催化动力学。密度泛函理论计算进一步证明,在 ZIF-L 中注入 Co 原子和 Cu 原子可优化氢中间产物的自由吸附能,从而加速氢氧还原动力学。这项研究证实,向 MOFs 中注入高导电性金属原子以调节催化微环境是显著提高 MOFs 电催化活性的潜在途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
期刊最新文献
Ultrathin Ti3C2Tx MXene/Cellulose nanofiber composite film for enhanced mechanics & EMI shielding via freeze-thaw intercalation In-situ homologous bromine vacancies for enhanced C-Br bond activation and rapid debromination of decabromodiphenyl ether Oxygen vacancies-promoted oxidative esterification of ethylene glycol to methyl glycolate over Au/ZnO catalyst Photocatalytic dye removal with ZnO/Laser-Induced graphene nanocomposite Corrigendum to “A comparative nanotribological investigation on amorphous and polycrystalline forms of MoS2” [Appl. Surf. Sci. 672 (2024) 16042]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1