Su Wang, Jiaxiang Zhang, Kaixuan Ma, Wanyao Zhang, Yan Gao, Pengjie Yu, Shuangfei Zhao, Yirong Feng, Jiming Yang, Ruiyan Sun, Yuguang Li, Ning Zhu, Wei He, Kai Guo
{"title":"Design and optimization of novel vortex microreactors for ultrasound-assisted synthesis of high-performance Fe3O4 nanoparticles","authors":"Su Wang, Jiaxiang Zhang, Kaixuan Ma, Wanyao Zhang, Yan Gao, Pengjie Yu, Shuangfei Zhao, Yirong Feng, Jiming Yang, Ruiyan Sun, Yuguang Li, Ning Zhu, Wei He, Kai Guo","doi":"10.1016/j.cej.2024.157672","DOIUrl":null,"url":null,"abstract":"Microreactors excel in nanomaterial preparation but are limited by microchannel clogging for sustained long-term use. This study reports an innovative design of an ultrasound-assisted vortex microreactor for the continuous synthesis of high-performance nano-Fe<sub>3</sub>O<sub>4</sub> particles. Combining visual experiments with computational fluid dynamics (CFD) simulations, four vortex microreactors were designed, and their mixing and heat transfer processes were investigated. Through comprehensive analysis, microreactor-4 was identified as the optimal configuration, with an optimal flow rate of 1 mL/min and a temperature of 70 °C. By coupling the microreactor with ultrasound, a continuous preparation method for nano-Fe3O4 was realized. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) analyses revealed that the synthesized nano-Fe3O4 particles exhibit a spherical crystal morphology with an average particle size of approximately 6.68 nm, which is 24.4 % and 20.5 % smaller than those prepared by the beaker method and by a stirred-field coupled microreactor reported in the literature, respectively. Vibrating sample magnetometry (VSM) measurements indicated a saturation magnetization of 45.75 emu/g for the nano-Fe3O4, representing a 32.3 % increase over the beaker method and demonstrating excellent superparamagnetic properties. This study provides a novel and effective pathway for the continuous preparation of nanoscale magnetic materials.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"108 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157672","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microreactors excel in nanomaterial preparation but are limited by microchannel clogging for sustained long-term use. This study reports an innovative design of an ultrasound-assisted vortex microreactor for the continuous synthesis of high-performance nano-Fe3O4 particles. Combining visual experiments with computational fluid dynamics (CFD) simulations, four vortex microreactors were designed, and their mixing and heat transfer processes were investigated. Through comprehensive analysis, microreactor-4 was identified as the optimal configuration, with an optimal flow rate of 1 mL/min and a temperature of 70 °C. By coupling the microreactor with ultrasound, a continuous preparation method for nano-Fe3O4 was realized. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) analyses revealed that the synthesized nano-Fe3O4 particles exhibit a spherical crystal morphology with an average particle size of approximately 6.68 nm, which is 24.4 % and 20.5 % smaller than those prepared by the beaker method and by a stirred-field coupled microreactor reported in the literature, respectively. Vibrating sample magnetometry (VSM) measurements indicated a saturation magnetization of 45.75 emu/g for the nano-Fe3O4, representing a 32.3 % increase over the beaker method and demonstrating excellent superparamagnetic properties. This study provides a novel and effective pathway for the continuous preparation of nanoscale magnetic materials.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.