Evolutionary identification in dense separation fluidized beds using dynamic mode decomposition with pruning

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Neuroscience Pub Date : 2024-11-14 DOI:10.1016/j.cej.2024.157477
Gansu Zhang, Hongyang Li, Zhiqiang Li, Shuxian Su, Xuan Xu, Liang Dong, Wei Dai, Qinglai Wei
{"title":"Evolutionary identification in dense separation fluidized beds using dynamic mode decomposition with pruning","authors":"Gansu Zhang, Hongyang Li, Zhiqiang Li, Shuxian Su, Xuan Xu, Liang Dong, Wei Dai, Qinglai Wei","doi":"10.1016/j.cej.2024.157477","DOIUrl":null,"url":null,"abstract":"Evolutionary identification of hydrodynamics from pressure signals is crucial for advancing the precise control of dry coal separation. Dynamic Mode Decomposition (DMD) is the key method to construct the data-driven control framework. Pressure signals rather than snapshots are investigated for industrial applications, bringing challenges to the implementation of DMD. The techniques of time delay embedding and optimal amplitude are introduced to make DMD work better for pressure signals. Comprehensive parameter tests of stack dimension <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi is=\"true\"&gt;s&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 469.5 600.2\" width=\"1.09ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-73\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">s</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">s</mi></math></script></span> and truncation order <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mi is=\"true\"&gt;r&lt;/mi&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 451.5 600.2\" width=\"1.049ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-72\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">r</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">r</mi></math></script></span> are carried out to seek for optimal identification performance. Due to parameter sensitivity, the qualification verification by sliding windows is performed to determine the robustness of parameter pairs. Spatiotemporal coherent structures are extracted to guide the regulation of separation process. In order to avoid the inefficiency of control, a heuristic sparsity promoting method using pruning is proposed to obtain a reduced order model. The original modes more than 100 can be reduced to approximately 35 primary modes. Furthermore, the Prune dominant frequency is defined, which can perceive the subtle fluctuations of temporal evolution than FFT and DMD for the long-term time. Present study provides the insight of hydrodynamics of dense gas-solid fluidized bed, establishing the foundation for future control studies of dry coal separation.","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"25 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157477","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Evolutionary identification of hydrodynamics from pressure signals is crucial for advancing the precise control of dry coal separation. Dynamic Mode Decomposition (DMD) is the key method to construct the data-driven control framework. Pressure signals rather than snapshots are investigated for industrial applications, bringing challenges to the implementation of DMD. The techniques of time delay embedding and optimal amplitude are introduced to make DMD work better for pressure signals. Comprehensive parameter tests of stack dimension s and truncation order r are carried out to seek for optimal identification performance. Due to parameter sensitivity, the qualification verification by sliding windows is performed to determine the robustness of parameter pairs. Spatiotemporal coherent structures are extracted to guide the regulation of separation process. In order to avoid the inefficiency of control, a heuristic sparsity promoting method using pruning is proposed to obtain a reduced order model. The original modes more than 100 can be reduced to approximately 35 primary modes. Furthermore, the Prune dominant frequency is defined, which can perceive the subtle fluctuations of temporal evolution than FFT and DMD for the long-term time. Present study provides the insight of hydrodynamics of dense gas-solid fluidized bed, establishing the foundation for future control studies of dry coal separation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用带剪枝的动态模式分解对密集分离流化床进行进化识别
从压力信号中进化识别流体力学对于推进干煤分离的精确控制至关重要。动态模式分解(DMD)是构建数据驱动控制框架的关键方法。工业应用研究的是压力信号而不是快照,这给 DMD 的实施带来了挑战。为了使 DMD 更好地用于压力信号,引入了时间延迟嵌入和最佳振幅技术。对堆栈尺寸 ss 和截断阶数 rr 进行了全面的参数测试,以寻求最佳的识别性能。由于参数的敏感性,通过滑动窗口进行合格验证,以确定参数对的稳健性。提取时空相干结构来指导分离过程的调节。为了避免控制的低效率,提出了一种使用剪枝的启发式稀疏性促进方法,以获得减阶模型。原来超过 100 个的模式可以减少到大约 35 个主模式。此外,还定义了 Prune 主频,与 FFT 和 DMD 相比,它能长期感知时间演化的微妙波动。本研究提供了对高密度气固流化床流体力学的深入了解,为未来干法选煤的控制研究奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
期刊最新文献
Issue Editorial Masthead Emerging Frontiers in Conformational Exploration of Disordered Proteins: Integrating Autoencoder and Molecular Simulations. Pathological Mutations D169G and P112H Electrostatically Aggravate the Amyloidogenicity of the Functional Domain of TDP-43. Deciphering the Monomeric and Dimeric Conformational Landscapes of the Full-Length TDP-43 and the Impact of the C-Terminal Domain. Discovery of the First-in-Class Dual TSPO/Carbonic Anhydrase Modulators with Promising Neurotrophic Activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1