Yingfu Li, Bohua Zhang, Aimin Ren, Dongdong Wang, Jun Zhang, Changming Nie, Zhongmin Su, Luyi Zou
{"title":"SOGCN: Prediction of key properties of MR-TADF materials using graph convolutional neural networks","authors":"Yingfu Li, Bohua Zhang, Aimin Ren, Dongdong Wang, Jun Zhang, Changming Nie, Zhongmin Su, Luyi Zou","doi":"10.1016/j.cej.2024.157676","DOIUrl":null,"url":null,"abstract":"The exploration of the structure and properties of the luminescent materials in OLED devices using Multiple Resonance Thermally Activated Delayed Fluorescence (MR-TADF) is constrained by challenges related to long cycles and high experimental costs, making it a key obstacle in the development of new materials. In response to this challenge, we propose an innovative approach by constructing a graph convolutional neural network model named SOGCN to quickly determine whether an unsynthesized material has the potential to become an MR material, and accurately predict its energy gap and half-peak width, thereby expediting the development process of MR-TADF materials. We constructed the MR220 dataset for training the model based on 220 MR-TADF molecules reported in experiments. To ensure the reliability of the SOGCN model in predicting new samples, we have established a rigorous set of theoretical calculation evaluation standards, providing crucial references for the model. In the prediction of the properties of 37 new samples of MR-TADF molecules, SOGCN successfully predicted the singlet–triplet energy gap (ΔE<sub>ST</sub>) of some samples, demonstrating a good trend in FWHM prediction as well. Finally, we have synthesized our designed molecule, Design3 (<strong>DtCzB-Boz</strong>), the organic light-emitting diodes based on <strong>DtCzB-Boz</strong> exhibit an emission peak at 508 nm, with the FWHM is 27 nm. The result of photophysical characterization is highly consistent with the predicted value of SOGCN. Notably, the mean absolute errors (MAE) between our model predictions and experimental/computational values were as low as 0.037 eV and 12 nm, respectively. This indicates that SOGCN exhibits higher efficiency and accuracy in predicting the properties of MR-TADF materials.","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"216 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157676","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The exploration of the structure and properties of the luminescent materials in OLED devices using Multiple Resonance Thermally Activated Delayed Fluorescence (MR-TADF) is constrained by challenges related to long cycles and high experimental costs, making it a key obstacle in the development of new materials. In response to this challenge, we propose an innovative approach by constructing a graph convolutional neural network model named SOGCN to quickly determine whether an unsynthesized material has the potential to become an MR material, and accurately predict its energy gap and half-peak width, thereby expediting the development process of MR-TADF materials. We constructed the MR220 dataset for training the model based on 220 MR-TADF molecules reported in experiments. To ensure the reliability of the SOGCN model in predicting new samples, we have established a rigorous set of theoretical calculation evaluation standards, providing crucial references for the model. In the prediction of the properties of 37 new samples of MR-TADF molecules, SOGCN successfully predicted the singlet–triplet energy gap (ΔEST) of some samples, demonstrating a good trend in FWHM prediction as well. Finally, we have synthesized our designed molecule, Design3 (DtCzB-Boz), the organic light-emitting diodes based on DtCzB-Boz exhibit an emission peak at 508 nm, with the FWHM is 27 nm. The result of photophysical characterization is highly consistent with the predicted value of SOGCN. Notably, the mean absolute errors (MAE) between our model predictions and experimental/computational values were as low as 0.037 eV and 12 nm, respectively. This indicates that SOGCN exhibits higher efficiency and accuracy in predicting the properties of MR-TADF materials.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research