{"title":"Pyro-phototronic Effect in Colloidal Quantum Dots on Silicon Heterojunction for High-detectivity Infrared Photodetectors","authors":"Vishwa Bhatt, Manjeet Kumar, Ha-Neul Kim, Doheon Yoo, Ju-Hyung Yun, Min-Jae Choi","doi":"10.1016/j.nanoen.2024.110465","DOIUrl":null,"url":null,"abstract":"Solution-processed colloidal quantum dots (CQDs) have attracted significant interest for infrared photodetection, particularly due to their easy integration with silicon-based electronics. Among these, silver sulfide (Ag<sub>2</sub>S) CQDs stand out as non-toxic infrared semiconductors. However, their application in photodetectors has traditionally shown lower detectivity compared to devices based on lead sulfide and mercury telluride CQDs. Here we demonstrate report Ag<sub>2</sub>S CQD/silicon p-n heterojunction photodetectors that exhibit substantially enhanced detectivity. This improvement was facilitated by the pyro-phototronic effect (PPE) in Ag<sub>2</sub>S CQDs, which significantly increases the photocurrent. Consequently, the detectivity of the CQD/silicon photodetector was improved by a factor of 17, reaching 4.1×10<sup>10</sup> Jones at 980<!-- --> <!-- -->nm. These findings pave the way for new opportunities in utilizing CQDs for pyro-phototronic driven, solution-processed optoelectronic devices.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":null,"pages":null},"PeriodicalIF":19.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2024.110465","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solution-processed colloidal quantum dots (CQDs) have attracted significant interest for infrared photodetection, particularly due to their easy integration with silicon-based electronics. Among these, silver sulfide (Ag2S) CQDs stand out as non-toxic infrared semiconductors. However, their application in photodetectors has traditionally shown lower detectivity compared to devices based on lead sulfide and mercury telluride CQDs. Here we demonstrate report Ag2S CQD/silicon p-n heterojunction photodetectors that exhibit substantially enhanced detectivity. This improvement was facilitated by the pyro-phototronic effect (PPE) in Ag2S CQDs, which significantly increases the photocurrent. Consequently, the detectivity of the CQD/silicon photodetector was improved by a factor of 17, reaching 4.1×1010 Jones at 980 nm. These findings pave the way for new opportunities in utilizing CQDs for pyro-phototronic driven, solution-processed optoelectronic devices.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.