Richard Burns, William J. Young, Nay Aung, Luis R. Lopes, Perry M. Elliott, Petros Syrris, Roberto Barriales-Villa, Catrin Sohrabi, Steffen E. Petersen, Julia Ramírez, Alistair Young, Patricia B. Munroe
{"title":"Genetic basis of right and left ventricular heart shape","authors":"Richard Burns, William J. Young, Nay Aung, Luis R. Lopes, Perry M. Elliott, Petros Syrris, Roberto Barriales-Villa, Catrin Sohrabi, Steffen E. Petersen, Julia Ramírez, Alistair Young, Patricia B. Munroe","doi":"10.1038/s41467-024-53594-7","DOIUrl":null,"url":null,"abstract":"<p>Heart shape captures variation in cardiac structure beyond traditional phenotypes of mass and volume. Although observational studies have demonstrated associations with cardiometabolic risk factors and diseases, its genetic basis is less understood. We utilised cardiovascular magnetic resonance images from 45,683 UK Biobank participants to construct a heart shape atlas from bi-ventricular end-diastolic surface mesh models through principal component (PC) analysis. Genome-wide association studies were performed on the first 11 PCs that captured 83.6% of shape variance. We identified 43 significant loci, 14 were previously unreported for cardiac traits. Genetically predicted PCs were associated with cardiometabolic diseases. In particular two PCs (2 and 3) linked with more spherical ventricles being associated with increased risk of atrial fibrillation. Our study explores the genetic basis of multidimensional bi-ventricular heart shape using PCA, reporting new loci and biology, as well as polygenic risk scores for exploring genetic relationships of heart shape with cardiometabolic diseases.</p>","PeriodicalId":14,"journal":{"name":"ACS Combinatorial Science","volume":"4 1","pages":""},"PeriodicalIF":3.7840,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Combinatorial Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53594-7","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0
Abstract
Heart shape captures variation in cardiac structure beyond traditional phenotypes of mass and volume. Although observational studies have demonstrated associations with cardiometabolic risk factors and diseases, its genetic basis is less understood. We utilised cardiovascular magnetic resonance images from 45,683 UK Biobank participants to construct a heart shape atlas from bi-ventricular end-diastolic surface mesh models through principal component (PC) analysis. Genome-wide association studies were performed on the first 11 PCs that captured 83.6% of shape variance. We identified 43 significant loci, 14 were previously unreported for cardiac traits. Genetically predicted PCs were associated with cardiometabolic diseases. In particular two PCs (2 and 3) linked with more spherical ventricles being associated with increased risk of atrial fibrillation. Our study explores the genetic basis of multidimensional bi-ventricular heart shape using PCA, reporting new loci and biology, as well as polygenic risk scores for exploring genetic relationships of heart shape with cardiometabolic diseases.
期刊介绍:
The Journal of Combinatorial Chemistry has been relaunched as ACS Combinatorial Science under the leadership of new Editor-in-Chief M.G. Finn of The Scripps Research Institute. The journal features an expanded scope and will build upon the legacy of the Journal of Combinatorial Chemistry, a highly cited leader in the field.