Shiqi Liu , Zeqing Long , Jinsong Liang , Jie Zhang , Duofei Hu , Pengfei Hou , Guangming Zhang
{"title":"Interpretable causal machine learning optimization tool for improving efficiency of internal carbon source-biological denitrification","authors":"Shiqi Liu , Zeqing Long , Jinsong Liang , Jie Zhang , Duofei Hu , Pengfei Hou , Guangming Zhang","doi":"10.1016/j.biortech.2024.131787","DOIUrl":null,"url":null,"abstract":"<div><div>Interpretable causal machine learning (ICML) was used to predict the performance of denitrification and clarify the relationships between influencing factors and denitrification. Multiple models were examined, and XG-Boost model provided the best prediction (R<sup>2</sup> = 0.8743). Based on the ICML framework, hydraulic retention time (HRT), mixture chemical oxygen demand/total nitrogen (COD/TN = C/N), mixture COD concentration, and pretreatment technology were identified as important features affecting the denitrification performance. Further, tapping point and partial dependence analyses provided the range of key factors that precisely regulate denitrification. In the application analysis, HRT (6–10.5 h), mixture C/N (6–12), and mixture COD concentration (300–600 mg L<sup>−1</sup>) were the appropriate operating ranges, achieving TN removal of approximately 73 %–77 %. The effluent TN and COD concentrations met the discharge standards for wastewater in China (class 1A) and EU. These findings provide support for regulating excess sludge as internal carbon source to promote denitrification.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131787"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852424014913","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Interpretable causal machine learning (ICML) was used to predict the performance of denitrification and clarify the relationships between influencing factors and denitrification. Multiple models were examined, and XG-Boost model provided the best prediction (R2 = 0.8743). Based on the ICML framework, hydraulic retention time (HRT), mixture chemical oxygen demand/total nitrogen (COD/TN = C/N), mixture COD concentration, and pretreatment technology were identified as important features affecting the denitrification performance. Further, tapping point and partial dependence analyses provided the range of key factors that precisely regulate denitrification. In the application analysis, HRT (6–10.5 h), mixture C/N (6–12), and mixture COD concentration (300–600 mg L−1) were the appropriate operating ranges, achieving TN removal of approximately 73 %–77 %. The effluent TN and COD concentrations met the discharge standards for wastewater in China (class 1A) and EU. These findings provide support for regulating excess sludge as internal carbon source to promote denitrification.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.