Yi-Sheng He , Man Ge , Yi-Qing Xu , Zhao-Xing Gao , Tian He , Peng Zhang , Sha-Sha Tao , Peng Wang , Zhu Chen , Hai-Feng Pan
{"title":"Associations between blue space exposure and rheumatoid arthritis: The modifying effect of genetic susceptibility and air pollutants","authors":"Yi-Sheng He , Man Ge , Yi-Qing Xu , Zhao-Xing Gao , Tian He , Peng Zhang , Sha-Sha Tao , Peng Wang , Zhu Chen , Hai-Feng Pan","doi":"10.1016/j.ecoenv.2024.117346","DOIUrl":null,"url":null,"abstract":"<div><div>Studies on the interaction among genetic susceptibility, blue space exposure, and rheumatoid arthritis (RA) risk have been lacking. Therefore, we examined the association between blue space exposure and RA incidence and assess the modifying effect of genetic susceptibility and air pollutants. Form the UK Biobank, 322,783 participants without RA were enrolled in this study. The association between blue space exposure and RA incidence was estimated using a cox proportional hazards model. The combined effect of blue space and genetic factors on the risk of RA was further evaluated. The polygenic risk score (PRS) for RA was calculated to represent individual genetic risk, and the potential modification effect of air pollution on the relationship between blue space, PRS, and RA were explored. During a median follow-up of 12.4 years, 3659 RA cases were identified. A 10 % increase in blue space<sub>300 m</sub> was associated with a 22.6 % reduction in RA incidence (HR=0.774, 95 % CI: 0.670, 0.895), exhibiting a consistent downward trend in the exposure-response curve. A high PRS was an independent risk factor for RA (HR=1.393, 95 % CI: 1.347, 1.439). The associations between blue space exposure, PRS, and the risk of RA were dose-dependent, with the lowest risk observed among those with high levels of blue space and lower PRS (HR<sub>bluespace300m</sub>=0.501, 95 % CI: 0.431, 0.583; HR<sub>bluespace1000m</sub>=0.476, 95 % CI: 0.408, 0.555). Interaction analysis indicated that increased concentrations of air pollutants strengthened the relationship between PRS and RA. Blue space exposure mitigated the risk of RA development, particularly in individuals with low genetic risk.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"287 ","pages":"Article 117346"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651324014222","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Studies on the interaction among genetic susceptibility, blue space exposure, and rheumatoid arthritis (RA) risk have been lacking. Therefore, we examined the association between blue space exposure and RA incidence and assess the modifying effect of genetic susceptibility and air pollutants. Form the UK Biobank, 322,783 participants without RA were enrolled in this study. The association between blue space exposure and RA incidence was estimated using a cox proportional hazards model. The combined effect of blue space and genetic factors on the risk of RA was further evaluated. The polygenic risk score (PRS) for RA was calculated to represent individual genetic risk, and the potential modification effect of air pollution on the relationship between blue space, PRS, and RA were explored. During a median follow-up of 12.4 years, 3659 RA cases were identified. A 10 % increase in blue space300 m was associated with a 22.6 % reduction in RA incidence (HR=0.774, 95 % CI: 0.670, 0.895), exhibiting a consistent downward trend in the exposure-response curve. A high PRS was an independent risk factor for RA (HR=1.393, 95 % CI: 1.347, 1.439). The associations between blue space exposure, PRS, and the risk of RA were dose-dependent, with the lowest risk observed among those with high levels of blue space and lower PRS (HRbluespace300m=0.501, 95 % CI: 0.431, 0.583; HRbluespace1000m=0.476, 95 % CI: 0.408, 0.555). Interaction analysis indicated that increased concentrations of air pollutants strengthened the relationship between PRS and RA. Blue space exposure mitigated the risk of RA development, particularly in individuals with low genetic risk.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.