{"title":"Freshwater salinisation: unravelling causes, adaptive mechanisms, ecological impacts, and management strategies","authors":"Heshani Perera, Chandramali Jayawardana, Rohana Chandrajith","doi":"10.1007/s10661-024-13388-2","DOIUrl":null,"url":null,"abstract":"<div><p>Freshwater salinisation is a growing problem worldwide, affecting surface and groundwater resources. Compared with other global environmental issues, freshwater salinisation has been studied extensively in North America, Australia, and Europe but less so in South America, Asia, and Africa. Both the natural and anthropogenic sources can contribute for freshwater salinisation, through the concentration of dissolved salts in water rising above its normal levels. This review provides a comprehensive assessment of the causes of freshwater salinisation, the impacts on freshwater communities and ecosystem functions, the adaptive mechanisms for survival in an increasingly saline environment, and the management strategies available to control freshwater salinisation. Many human activities contribute to freshwater salinisation, including road salt use, agricultural practices, resource extraction, reservoir construction, and climate change. Aquatic organisms have evolved mechanisms to survive in increasingly saline environments, but excessive salinity can lead to mortality and non-lethal effects. Such effects can have cascading impacts on the structure and function of aquatic communities and ecosystem services. Therefore, monitoring programmes and chemical fingerprinting are needed to identify highly salinised areas, determine how various human activities contribute to freshwater salinisation, and implement management strategies. Furthermore, current research on freshwater salinisation has been limited to a few regions of the world. It is essential to expand the research further into exploring the impacts of salinisation on freshwater resources in unexplored geographic areas of the world that are mainly impacted by climate change scenarios.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"196 12","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-024-13388-2","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Freshwater salinisation is a growing problem worldwide, affecting surface and groundwater resources. Compared with other global environmental issues, freshwater salinisation has been studied extensively in North America, Australia, and Europe but less so in South America, Asia, and Africa. Both the natural and anthropogenic sources can contribute for freshwater salinisation, through the concentration of dissolved salts in water rising above its normal levels. This review provides a comprehensive assessment of the causes of freshwater salinisation, the impacts on freshwater communities and ecosystem functions, the adaptive mechanisms for survival in an increasingly saline environment, and the management strategies available to control freshwater salinisation. Many human activities contribute to freshwater salinisation, including road salt use, agricultural practices, resource extraction, reservoir construction, and climate change. Aquatic organisms have evolved mechanisms to survive in increasingly saline environments, but excessive salinity can lead to mortality and non-lethal effects. Such effects can have cascading impacts on the structure and function of aquatic communities and ecosystem services. Therefore, monitoring programmes and chemical fingerprinting are needed to identify highly salinised areas, determine how various human activities contribute to freshwater salinisation, and implement management strategies. Furthermore, current research on freshwater salinisation has been limited to a few regions of the world. It is essential to expand the research further into exploring the impacts of salinisation on freshwater resources in unexplored geographic areas of the world that are mainly impacted by climate change scenarios.
期刊介绍:
Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.