{"title":"Microplastics in agricultural soils: sources, impacts on soil organisms, plants, and humans","authors":"Fatimo Ajoke Bello, Abidemi Bashiru Folorunsho, Rogers Wainkwa Chia, Jin-Yong Lee, Samuel Aanuoluwapo Fasusi","doi":"10.1007/s10661-025-13874-1","DOIUrl":null,"url":null,"abstract":"<div><p>Agricultural land has long been regarded as a resource for food production, but over time, the effects of climate change have reduced the ability of soil to produce food efficiently. Nowadays, farmers have moved from traditional to modern techniques of farming. Across the globe, plastic mulching has become widely used on farmlands. According to a few studies, the breakdown of plastic mulches releases microplastics (MPs) into the soil. Despite studies reporting the presence of MPs in soils, there are limited studies on the sources and impacts on soil organisms, plant growth, fruits, and human health. This study evaluated research articles collected from the Web of Science to assess the origin of MP in soil and crops and its effects on soil organisms, plants, and humans. It was observed that MPs come from different sources such as waste water, organic fertilizer, irrigation water, sewage, and sludge. Plastic mulching, which can spread across agricultural fields at varying depths, is the dominant source. Furthermore, it was observed that MPs alter crop quality, reduce the leaf count of wheat, and decrease the root length of crops such as maize, water spinach, black gram, and garden cress. MP can decrease the abundance of soil microarthropods and nematodes, damage the intestinal walls of earthworms, and reduce the feeding and excretion of snails. MP causes liver damage, inflammation, respiratory irritation, and immunological issues. Ultimately, these contaminants (MPs) can transfer and have been detected in fruits and vegetables, which pose adverse effects on human health.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-025-13874-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Agricultural land has long been regarded as a resource for food production, but over time, the effects of climate change have reduced the ability of soil to produce food efficiently. Nowadays, farmers have moved from traditional to modern techniques of farming. Across the globe, plastic mulching has become widely used on farmlands. According to a few studies, the breakdown of plastic mulches releases microplastics (MPs) into the soil. Despite studies reporting the presence of MPs in soils, there are limited studies on the sources and impacts on soil organisms, plant growth, fruits, and human health. This study evaluated research articles collected from the Web of Science to assess the origin of MP in soil and crops and its effects on soil organisms, plants, and humans. It was observed that MPs come from different sources such as waste water, organic fertilizer, irrigation water, sewage, and sludge. Plastic mulching, which can spread across agricultural fields at varying depths, is the dominant source. Furthermore, it was observed that MPs alter crop quality, reduce the leaf count of wheat, and decrease the root length of crops such as maize, water spinach, black gram, and garden cress. MP can decrease the abundance of soil microarthropods and nematodes, damage the intestinal walls of earthworms, and reduce the feeding and excretion of snails. MP causes liver damage, inflammation, respiratory irritation, and immunological issues. Ultimately, these contaminants (MPs) can transfer and have been detected in fruits and vegetables, which pose adverse effects on human health.
期刊介绍:
Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.