Ying Hu, Jia Jia, Fanping Zhou, Dongsheng Shen, Jiali Shentu, Li Lu, Shengqi Qi, Min Zhu, Yuyang Long
{"title":"The synchronized dynamic release behavior of microplastics during farmland soil erosion process.","authors":"Ying Hu, Jia Jia, Fanping Zhou, Dongsheng Shen, Jiali Shentu, Li Lu, Shengqi Qi, Min Zhu, Yuyang Long","doi":"10.1016/j.jenvman.2024.123343","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastics (MPs) are widespread in farmland soil. However, the risks associated with their loss through soil erosion remain unknown. This study investigates the occurrence and behavior of MPs in farmland soil in a southeastern coastal area of China, focusing on their synchronized dynamic release during soil erosion scenarios. The results showed that the abundance of MPs in the tested farmland soil ranged from 2.40 × 10<sup>4</sup> to 1.04 × 10<sup>5</sup> items·kg<sup>-1</sup>. MPs predominantly appear as fragments and particles, with sizes concentrated between 30 and 100 μm. During the process of soil erosion, characterized by rapid soil subsidence, the amount of MPs released into water bodies initially decreases, averaging a reduction of 1.08 × 10<sup>4</sup> items·kg<sup>-1</sup>. This is followed by an average increase of 1.89 × 10<sup>4</sup> items·kg<sup>-1</sup>. The competition between the adsorption, collision, and sedimentation of soil particles and the desorption and release of settled particles, determines this behavior. This pattern is strongly related to the physicochemical properties and mechanical composition of the soil. Deep learning predictions revealed that, without external influences, 49.42% of MPs in farmland soil could be synchronously released into water bodies during erosion. The analysis shows that MPs exhibit dynamic behavior in time and space, posing serious threats to aquatic ecosystems. Controlling soil erosion in farmland is crucial for the source management of MP migration.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"371 ","pages":"123343"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2024.123343","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (MPs) are widespread in farmland soil. However, the risks associated with their loss through soil erosion remain unknown. This study investigates the occurrence and behavior of MPs in farmland soil in a southeastern coastal area of China, focusing on their synchronized dynamic release during soil erosion scenarios. The results showed that the abundance of MPs in the tested farmland soil ranged from 2.40 × 104 to 1.04 × 105 items·kg-1. MPs predominantly appear as fragments and particles, with sizes concentrated between 30 and 100 μm. During the process of soil erosion, characterized by rapid soil subsidence, the amount of MPs released into water bodies initially decreases, averaging a reduction of 1.08 × 104 items·kg-1. This is followed by an average increase of 1.89 × 104 items·kg-1. The competition between the adsorption, collision, and sedimentation of soil particles and the desorption and release of settled particles, determines this behavior. This pattern is strongly related to the physicochemical properties and mechanical composition of the soil. Deep learning predictions revealed that, without external influences, 49.42% of MPs in farmland soil could be synchronously released into water bodies during erosion. The analysis shows that MPs exhibit dynamic behavior in time and space, posing serious threats to aquatic ecosystems. Controlling soil erosion in farmland is crucial for the source management of MP migration.
期刊介绍:
The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.