Excellent broadband sound absorption in composites manufactured by embedding piezoelectric polymer aerogels in porous ceramics

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-11-07 DOI:10.1016/j.jcis.2024.11.036
Kunhan Chen, Dong Wang, Jiawei Du, Qikuan Cheng, Lu Zhang, Weibang Xia, Yunming Wang, Huamin Zhou
{"title":"Excellent broadband sound absorption in composites manufactured by embedding piezoelectric polymer aerogels in porous ceramics","authors":"Kunhan Chen,&nbsp;Dong Wang,&nbsp;Jiawei Du,&nbsp;Qikuan Cheng,&nbsp;Lu Zhang,&nbsp;Weibang Xia,&nbsp;Yunming Wang,&nbsp;Huamin Zhou","doi":"10.1016/j.jcis.2024.11.036","DOIUrl":null,"url":null,"abstract":"<div><div>Challenges remain in the design and manufacture of acoustic devices with excellent broadband sound absorption performance. Herein, an efficient acoustic absorber with hierarchical pore structure and additional acoustic-electrical energy conversion mechanism is reported in which combined zirconia porous ceramics and P(VDF-TrFE) piezoelectric aerogels. Reticular cross-scale pore structure enables sound waves to propagate and dissipate effectively. The vibrations generated by piezoelectric aerogels under acoustic excitation further consume sound waves through converting acoustic energy into electrical energy based on the local piezoelectric and triboelectric effect, which improves the medium and low-frequency sound absorption capability. The average sound absorption coefficient of the prepared acoustic composites reaches 0.87 while the noise reduction coefficient is 0.54. Furthermore, the composites also possess low density, high compressive strength, good hydrophobicity and thermal insulation properties for applications. Therefore, this innovative strategy offers new design ideas for the next generation of high-performance acoustic materials with promising applications in transportation and industrial construction.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"680 ","pages":"Pages 537-545"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724025931","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Challenges remain in the design and manufacture of acoustic devices with excellent broadband sound absorption performance. Herein, an efficient acoustic absorber with hierarchical pore structure and additional acoustic-electrical energy conversion mechanism is reported in which combined zirconia porous ceramics and P(VDF-TrFE) piezoelectric aerogels. Reticular cross-scale pore structure enables sound waves to propagate and dissipate effectively. The vibrations generated by piezoelectric aerogels under acoustic excitation further consume sound waves through converting acoustic energy into electrical energy based on the local piezoelectric and triboelectric effect, which improves the medium and low-frequency sound absorption capability. The average sound absorption coefficient of the prepared acoustic composites reaches 0.87 while the noise reduction coefficient is 0.54. Furthermore, the composites also possess low density, high compressive strength, good hydrophobicity and thermal insulation properties for applications. Therefore, this innovative strategy offers new design ideas for the next generation of high-performance acoustic materials with promising applications in transportation and industrial construction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过在多孔陶瓷中嵌入压电聚合物气凝胶而制造的复合材料具有出色的宽带吸声性能。
在设计和制造具有出色宽带吸声性能的吸声装置方面仍存在挑战。本文报告了一种具有分层孔隙结构和附加声电能量转换机制的高效吸声器,它结合了氧化锆多孔陶瓷和 P(VDF-TrFE)压电气凝胶。网状交叉尺度孔隙结构可使声波有效传播和消散。压电气凝胶在声激励下产生的振动基于局部压电效应和三电效应,通过将声能转化为电能进一步消耗声波,从而提高了中低频吸声能力。制备的声学复合材料的平均吸声系数达到 0.87,降噪系数为 0.54。此外,复合材料还具有低密度、高抗压强度、良好的憎水性和隔热性能。因此,这种创新策略为下一代高性能声学材料提供了新的设计思路,在交通和工业建筑领域具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
A novel strategy to improve the electrochemical properties of in-situ polymerized 1,3-dioxolane electrolyte in lithium metal batteries. Coupling multifunctional ZnCoAl-layered double hydroxides on Ti-Fe2O3 photoanode for efficient photoelectrochemical water oxidation. In-situ construction of high-performance artificial solid electrolyte interface layer on anode surfaces for anode-free lithium metal batteries. Manipulating the d-band center of bimetallic molybdenum vanadate for high performance aqueous zinc-ion battery. Separator modification with a high-entropy hydroxyphosphate, Co0.29Ni0.15Fe0.33Cu0.16Ca3.9(PO4)3(OH), for high-performance Li-S batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1