Xiaofang Chen, Xiaotian Ding, Cong Bian, Kun Wang, Xiao Zheng, Haiyan Yan, Mengqian Qiao, Shuo Wu, Yihua Li, Li Wang, Lifei Wang, Yu Du, Yuhuan Li, Bin Hong
{"title":"Design, synthesis, and structure-activity relationships of xanthine derivatives as broad-spectrum inhibitors of coronavirus replication.","authors":"Xiaofang Chen, Xiaotian Ding, Cong Bian, Kun Wang, Xiao Zheng, Haiyan Yan, Mengqian Qiao, Shuo Wu, Yihua Li, Li Wang, Lifei Wang, Yu Du, Yuhuan Li, Bin Hong","doi":"10.1016/j.bioorg.2024.107925","DOIUrl":null,"url":null,"abstract":"<p><p>Illuminated by insights into the hijacking of host cellular metabolism by coronaviruses, we identified an initial hit compound 7030B-C5, characterized by a xanthine scaffold, via a cellular-level phenotypic screening from a domestic repertoire of lipid-modulating agents. A series of derivatives were synthesized and optimized through comprehensive structure-activity relationship (SAR) studies focusing on the N-1, C-8, and N-7 positions of xanthine and preliminary exploration on the N-3 position and parent nucleus. Compounds 10e, 10f and 10o, featuring modifications at the N-7 position, showed inhibitory activity with half maximal effective concentration (EC<sub>50</sub>) values in the three-digit nanomolar range against human coronavirus-229E (HCoV-229E). In particular, compound 10o exerted superior potency across various coronavirus strains, including HCoV-229E, HCoV-OC43, and the Omicron variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Further investigations revealed that 10o acted on the post-entry stages of virus replication and exhibited a distinctive antiviral mechanism from that of clinically approved nirmatrelvir and molnupiravir. Moreover, drug combination study indicates that 10o operates additively with nirmatrelvir, molnupiravir or omicsynin B4, a dual inhibitor of host proteases for S protein priming. Additionally, in vivo assessments show that 10o has favorable pharmacokinetic and safety profiles compared to its parent compound 7030B-C5. These findings underscore the potential of 10o as a promising antiviral candidate for the treatment of current and potential future coronavirus infections.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"153 ","pages":"107925"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.107925","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Illuminated by insights into the hijacking of host cellular metabolism by coronaviruses, we identified an initial hit compound 7030B-C5, characterized by a xanthine scaffold, via a cellular-level phenotypic screening from a domestic repertoire of lipid-modulating agents. A series of derivatives were synthesized and optimized through comprehensive structure-activity relationship (SAR) studies focusing on the N-1, C-8, and N-7 positions of xanthine and preliminary exploration on the N-3 position and parent nucleus. Compounds 10e, 10f and 10o, featuring modifications at the N-7 position, showed inhibitory activity with half maximal effective concentration (EC50) values in the three-digit nanomolar range against human coronavirus-229E (HCoV-229E). In particular, compound 10o exerted superior potency across various coronavirus strains, including HCoV-229E, HCoV-OC43, and the Omicron variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Further investigations revealed that 10o acted on the post-entry stages of virus replication and exhibited a distinctive antiviral mechanism from that of clinically approved nirmatrelvir and molnupiravir. Moreover, drug combination study indicates that 10o operates additively with nirmatrelvir, molnupiravir or omicsynin B4, a dual inhibitor of host proteases for S protein priming. Additionally, in vivo assessments show that 10o has favorable pharmacokinetic and safety profiles compared to its parent compound 7030B-C5. These findings underscore the potential of 10o as a promising antiviral candidate for the treatment of current and potential future coronavirus infections.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.