Raphael Koll, Elena Hauten, Jesse Theilen, Corinna Bang, Michelle Bouchard, Ralf Thiel, Christian Möllmann, Jason Nicholas Woodhouse, Andrej Fabrizius
{"title":"Spatio-temporal plasticity of gill microbiota in estuarine fish.","authors":"Raphael Koll, Elena Hauten, Jesse Theilen, Corinna Bang, Michelle Bouchard, Ralf Thiel, Christian Möllmann, Jason Nicholas Woodhouse, Andrej Fabrizius","doi":"10.1016/j.scitotenv.2024.177505","DOIUrl":null,"url":null,"abstract":"<p><p>Coastal marine and estuarine systems are subject to enormous endogenous and exogenous pressures, particularly climate change, while at the same time being highly productive sources and nurseries for fish populations. Interactions between host and microbiome are increasingly recognized for their importance for fish health, with growing evidence indicating that increasing environmental pressures impact host resilience and favor the raise of opportunistic bacterial taxa. The microbial composition of the gill mucus reflects environmental conditions and represents an entry route for pathogens into the fish body. High-throughput sequencing of prokaryotic populations from 250 samples of two fish species with highly different habitat preferences, as well as seasonal and spatial distributions in the Elbe estuary system, allowed us to describe the variation of the microbiota along a salinity gradient and under fluctuating environmental conditions. The analysis of estuarine fish core microbiota in relation to variable bacterial components indicated dysbiotic states under sustained hypoxia and high nutrient loads largely driven by increased prevalence of facultatively aerobic (Acinetobacter) and anaerobic heterotrophs (Shewanella, Aeromonas). By correlating bacterial abundances with environmental and physiological parameters in a co-occurrence network approach, we describe plasticity in microbiota composition, identify potential biomarkers for fish health monitoring and reconstruct movement patterns of the fish. Our results can help to shape future minimal-invasive and cost-effective monitoring programs, and identify factors that need to be controlled in the estuary to promote fish and stock health.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177505"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177505","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Coastal marine and estuarine systems are subject to enormous endogenous and exogenous pressures, particularly climate change, while at the same time being highly productive sources and nurseries for fish populations. Interactions between host and microbiome are increasingly recognized for their importance for fish health, with growing evidence indicating that increasing environmental pressures impact host resilience and favor the raise of opportunistic bacterial taxa. The microbial composition of the gill mucus reflects environmental conditions and represents an entry route for pathogens into the fish body. High-throughput sequencing of prokaryotic populations from 250 samples of two fish species with highly different habitat preferences, as well as seasonal and spatial distributions in the Elbe estuary system, allowed us to describe the variation of the microbiota along a salinity gradient and under fluctuating environmental conditions. The analysis of estuarine fish core microbiota in relation to variable bacterial components indicated dysbiotic states under sustained hypoxia and high nutrient loads largely driven by increased prevalence of facultatively aerobic (Acinetobacter) and anaerobic heterotrophs (Shewanella, Aeromonas). By correlating bacterial abundances with environmental and physiological parameters in a co-occurrence network approach, we describe plasticity in microbiota composition, identify potential biomarkers for fish health monitoring and reconstruct movement patterns of the fish. Our results can help to shape future minimal-invasive and cost-effective monitoring programs, and identify factors that need to be controlled in the estuary to promote fish and stock health.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.