Julian Heinrich, Elisa Siddiqui, Henrike Eckstein, Michael Naumann, Nora Kulak
{"title":"Ascorbate: a forgotten component in the cytotoxicity of Cu(II) ATCUN peptide complexes.","authors":"Julian Heinrich, Elisa Siddiqui, Henrike Eckstein, Michael Naumann, Nora Kulak","doi":"10.1007/s00775-024-02083-9","DOIUrl":null,"url":null,"abstract":"<p><p>In 1983, Linus Pauling and colleagues reported about enhanced antitumor activity of the Cu(II) complex of the simplest ATCUN (amino terminal Cu(II) and Ni(II)-binding motif) peptide (NH<sub>2</sub>-Gly-Gly-His-COOH, GGH) in the presence of ascorbate as an additive. In the following 4 decades, structural modifications of this complex were implemented, however, anticancer activity could not be significantly increased. This has led to neglecting the ATCUN motif and its Cu(II) complexes as potential chemotherapeutic agents. Furthermore, the addition of ascorbate with its positive effect on the anticancer activity has fallen into oblivion. In this work, we compared Cu(II) GGH with Cu(II) ATCUN peptides bearing β-Ala instead of Gly at the 2nd position of the peptide sequence regarding their in vitro complex stability and cytotoxicity (MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and annexin V-FITC (fluorescein isothiocyanate) apoptosis assay) towards three cancer cell lines (AGS, HeLa and NCI-N87). Such an exchange of amino acids led to an up to three-fold higher cytotoxic effect in the presence of ascorbate. We thus achieved a significant increase in the otherwise moderate cytotoxicity of Cu(II) ATCUN-like complexes. Lipophilicity assays (n-octanol/water coefficient, log P values) of the studied complexes were used to evaluate differences in the antiproliferative activity.</p>","PeriodicalId":603,"journal":{"name":"JBIC Journal of Biological Inorganic Chemistry","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JBIC Journal of Biological Inorganic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1007/s00775-024-02083-9","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In 1983, Linus Pauling and colleagues reported about enhanced antitumor activity of the Cu(II) complex of the simplest ATCUN (amino terminal Cu(II) and Ni(II)-binding motif) peptide (NH2-Gly-Gly-His-COOH, GGH) in the presence of ascorbate as an additive. In the following 4 decades, structural modifications of this complex were implemented, however, anticancer activity could not be significantly increased. This has led to neglecting the ATCUN motif and its Cu(II) complexes as potential chemotherapeutic agents. Furthermore, the addition of ascorbate with its positive effect on the anticancer activity has fallen into oblivion. In this work, we compared Cu(II) GGH with Cu(II) ATCUN peptides bearing β-Ala instead of Gly at the 2nd position of the peptide sequence regarding their in vitro complex stability and cytotoxicity (MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and annexin V-FITC (fluorescein isothiocyanate) apoptosis assay) towards three cancer cell lines (AGS, HeLa and NCI-N87). Such an exchange of amino acids led to an up to three-fold higher cytotoxic effect in the presence of ascorbate. We thus achieved a significant increase in the otherwise moderate cytotoxicity of Cu(II) ATCUN-like complexes. Lipophilicity assays (n-octanol/water coefficient, log P values) of the studied complexes were used to evaluate differences in the antiproliferative activity.
期刊介绍:
Biological inorganic chemistry is a growing field of science that embraces the principles of biology and inorganic chemistry and impacts other fields ranging from medicine to the environment. JBIC (Journal of Biological Inorganic Chemistry) seeks to promote this field internationally. The Journal is primarily concerned with advances in understanding the role of metal ions within a biological matrix—be it a protein, DNA/RNA, or a cell, as well as appropriate model studies. Manuscripts describing high-quality original research on the above topics in English are invited for submission to this Journal. The Journal publishes original articles, minireviews, and commentaries on debated issues.