Measuring 15N and 13C Enrichment Levels in Sparsely Labeled Proteins Using High-Resolution and Tandem Mass Spectrometry.

IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of the American Society for Mass Spectrometry Pub Date : 2024-12-04 Epub Date: 2024-11-12 DOI:10.1021/jasms.4c00237
Elijah T Roberts, Jonathan Choi, Jeremy Risher, Paul G Kremer, Adam W Barb, I Jonathan Amster
{"title":"Measuring <sup>15</sup>N and <sup>13</sup>C Enrichment Levels in Sparsely Labeled Proteins Using High-Resolution and Tandem Mass Spectrometry.","authors":"Elijah T Roberts, Jonathan Choi, Jeremy Risher, Paul G Kremer, Adam W Barb, I Jonathan Amster","doi":"10.1021/jasms.4c00237","DOIUrl":null,"url":null,"abstract":"<p><p>Isotope labeling of both <sup>15</sup>N and <sup>13</sup>C in selected amino acids in a protein, known as sparse labeling, is an alternative to uniform labeling and is particularly useful for proteins that must be expressed using mammalian cells, including glycoproteins. High levels of enrichment in the selected amino acids enable multidimensional heteronuclear NMR measurements of glycoprotein three-dimensional structure. Mass spectrometry provides a means to quantify the degree of enrichment. Mass spectrometric measurements of tryptic peptides of a selectively labeled glycoprotein expressed in HEK293 cells revealed complicated isotope patterns which consisted of many overlapping isotope patterns from intermediately labeled peptides, which complicates the determination of the label incorporation. Two challenges are uncovered by these measurements. Metabolic scrambling of amino groups can reduce the <sup>15</sup>N content of enriched amino acids or increase the <sup>15</sup>N in nontarget amino acids. Also, undefined, unlabeled medium components may dilute the enrichment level of labeled amino acids. The impact of this unexpected metabolic scrambling was overcome by simulating isotope patterns for all isotope-labeled peptide states and generating linear combinations to fit to the data. This method has been used to determine the percent incorporation of <sup>15</sup>N and <sup>13</sup>C labels and has identified several metabolic scrambling effects that were previously undetected in NMR experiments. Ultrahigh mass resolution is also utilized to obtain isotopic fine structure, from which enrichment levels of <sup>15</sup>N and <sup>13</sup>C can be assigned unequivocally. Finally, tandem mass spectrometry can be used to confirm the location of heavy isotope labels in the peptides.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"2877-2889"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622383/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00237","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Isotope labeling of both 15N and 13C in selected amino acids in a protein, known as sparse labeling, is an alternative to uniform labeling and is particularly useful for proteins that must be expressed using mammalian cells, including glycoproteins. High levels of enrichment in the selected amino acids enable multidimensional heteronuclear NMR measurements of glycoprotein three-dimensional structure. Mass spectrometry provides a means to quantify the degree of enrichment. Mass spectrometric measurements of tryptic peptides of a selectively labeled glycoprotein expressed in HEK293 cells revealed complicated isotope patterns which consisted of many overlapping isotope patterns from intermediately labeled peptides, which complicates the determination of the label incorporation. Two challenges are uncovered by these measurements. Metabolic scrambling of amino groups can reduce the 15N content of enriched amino acids or increase the 15N in nontarget amino acids. Also, undefined, unlabeled medium components may dilute the enrichment level of labeled amino acids. The impact of this unexpected metabolic scrambling was overcome by simulating isotope patterns for all isotope-labeled peptide states and generating linear combinations to fit to the data. This method has been used to determine the percent incorporation of 15N and 13C labels and has identified several metabolic scrambling effects that were previously undetected in NMR experiments. Ultrahigh mass resolution is also utilized to obtain isotopic fine structure, from which enrichment levels of 15N and 13C can be assigned unequivocally. Finally, tandem mass spectrometry can be used to confirm the location of heavy isotope labels in the peptides.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用高分辨率和串联质谱法测量稀疏标记蛋白质中的 15N 和 13C 富集水平
对蛋白质中选定氨基酸的 15N 和 13C 进行同位素标记(称为稀疏标记)是均匀标记的一种替代方法,对必须使用哺乳动物细胞表达的蛋白质(包括糖蛋白)特别有用。通过对所选氨基酸的高度富集,可以对糖蛋白的三维结构进行多维异核核磁共振测量。质谱法提供了一种量化富集程度的方法。对在 HEK293 细胞中表达的选择性标记糖蛋白的胰蛋白肽进行质谱测量,发现了复杂的同位素模式,其中包括许多来自中间标记肽的重叠同位素模式,这使得标记掺入的确定变得复杂。这些测量结果揭示了两个难题。氨基酸基团的代谢扰乱会降低富集氨基酸的 15N 含量,或增加非目标氨基酸的 15N。此外,未定义、未标记的培养基成分可能会稀释标记氨基酸的富集水平。通过模拟所有同位素标记肽状态的同位素模式,并生成线性组合来拟合数据,从而克服了这种意想不到的代谢扰乱的影响。这种方法已被用于确定 15N 和 13C 标记的掺入百分比,并发现了以前在核磁共振实验中未发现的几种代谢扰乱效应。此外,还利用超高质量分辨率来获得同位素精细结构,并从中明确分配 15N 和 13C 的富集水平。最后,串联质谱法可用于确认肽中重同位素标签的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
257
审稿时长
1 months
期刊介绍: The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role. Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives
期刊最新文献
Machine Learning Correlation of Electron Micrographs and ToF-SIMS for the Analysis of Organic Biomarkers in Mudstone. Predicting Precursor Ions Combined with Fragmentation Pathway for Screening and Identification of Flavan-3-ol Oligomers in Tea (Camellia sinensis. var. assamica). Interpolation of Imaging Mass Spectrometry Data by a Window-Based Adversarial Autoencoder Method. MS SIEVE-Pushing the Limits for Biomolecular Mass Spectrometry. Photochemical and Collision-Induced Cross-Linking of Lys, Arg, and His to Nitrile Imines in Peptide Conjugate Ions in the Gas Phase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1