Isabeau Vermeulen, Michiel Vandenbosch, Delphine Viot, Joel Mercier, Diego Asensio-Wandosell Cabañas, Pilar Martinez-Martinez, Patrick Barton, Ron M A Heeren, Berta Cillero-Pastor
{"title":"Spatial Distribution of Brain PET Tracers by MALDI Imaging.","authors":"Isabeau Vermeulen, Michiel Vandenbosch, Delphine Viot, Joel Mercier, Diego Asensio-Wandosell Cabañas, Pilar Martinez-Martinez, Patrick Barton, Ron M A Heeren, Berta Cillero-Pastor","doi":"10.1021/jasms.4c00307","DOIUrl":null,"url":null,"abstract":"<p><p>Evaluating tissue distribution of Positron Emission Tomography (PET) tracers during their development conventionally involves autoradiography techniques, where radioactive compounds are used for <i>ex vivo</i> visualization and quantification in tissues during preclinical development stages. Mass Spectrometry Imaging (MSI) offers a potential alternative, providing spatial information without the need for radioactivity with a similar spatial resolution. This study aimed to optimize a MSI sample preparation protocol for assessing PET tracer candidates <i>ex vivo</i> with a focus on two compounds: UCB-J and UCB2400. We tested different matrices and introduced washing steps to improve PET tracer detection. Tissue homogenates were prepared to construct calibration curves for quantification. The incorporation of a washing step into the MSI sample preparation protocol enhanced the signal of both PET tracers. Our findings highlight MSI's potential as a cost-effective and efficient method for the evaluation of PET tracer distribution. The optimized approach offered here can provide a protocol that enhances the signal and minimizes ion suppression effect, which can be valuable for future evaluation of PET tracers in MSI studies.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00307","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Evaluating tissue distribution of Positron Emission Tomography (PET) tracers during their development conventionally involves autoradiography techniques, where radioactive compounds are used for ex vivo visualization and quantification in tissues during preclinical development stages. Mass Spectrometry Imaging (MSI) offers a potential alternative, providing spatial information without the need for radioactivity with a similar spatial resolution. This study aimed to optimize a MSI sample preparation protocol for assessing PET tracer candidates ex vivo with a focus on two compounds: UCB-J and UCB2400. We tested different matrices and introduced washing steps to improve PET tracer detection. Tissue homogenates were prepared to construct calibration curves for quantification. The incorporation of a washing step into the MSI sample preparation protocol enhanced the signal of both PET tracers. Our findings highlight MSI's potential as a cost-effective and efficient method for the evaluation of PET tracer distribution. The optimized approach offered here can provide a protocol that enhances the signal and minimizes ion suppression effect, which can be valuable for future evaluation of PET tracers in MSI studies.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives